Department of EECS - University of California at Berkeley
EECS 126 - Probability and Random Processes - Fall 2008
Midterm 1: 10/09/2008

Name:
SID:

1. Short Questions (20\%); 4\% each
1.1. Define "Random Variable"

Answer:
A random variable is a real-valued function of the outcome or a random experiment (80%). Details: To specify the random experiment, one defines a probability space (set of outcomes Ω and probability $P(A)$ of sets A of outcomes). The random variable is then a function $X: \Omega \rightarrow \Re$ (20\%).
1.2. Complete the sentence: A, B, C are mutually independent if and only if Answer:
$P(A \cap B)=P(A) P(B), P(B \cap C)=P(B) P(C), P(A \cap C)=P(A) P(C)$, $P(A \cap B \cap C)=P(A) P(B) P(C)$.
1.3. Bayes's Rule. Assume that $\left\{A_{1}, \ldots, A_{n}\right\}$ form a partition of Ω and that $p_{m}=P\left(A_{m}\right)$ and $q_{m}=P\left[B \mid A_{m}\right]$ for $m=1, \ldots, n$. Derive $P\left[A_{m} \mid B\right]$ in terms of p 's and q 's.
Answer:

$$
\begin{aligned}
P\left[A_{m} \mid B\right] & =\frac{P\left(A_{m} \cap B\right)}{P(B)}=\frac{P\left(A_{m}\right) P\left[B \mid A_{m}\right]}{\sum_{k=1}^{n} P\left(A_{k} \cap B\right)} \\
& =\frac{P\left(A_{m}\right) P\left[B \mid A_{m}\right]}{\sum_{k=1}^{n} P\left(A_{k}\right) P\left[B \mid A_{k}\right]}=\frac{p_{m} q_{m}}{\sum_{k=1}^{n} p_{k} q_{k}} .
\end{aligned}
$$

1.4. Assume that X is equal to 2 with probability 0.4 and is uniformly distributed in $[0,1]$ otherwise. Calculate $E(X)$ and $\operatorname{var}(X)$. (Hint: Recall that $\operatorname{var}(X)=E\left(X^{2}\right)-E(X)^{2}$.)

Answer:

$$
E(X)=0.4 \times 2+0.6 \times 0.5=1.1
$$

Also,

$$
\begin{aligned}
E\left(X^{2}\right) & =0.4 \times 2^{2}+0.6 \times \int_{0}^{1} x^{2} d x=0.4 \times 4+0.6 \times \frac{1}{3} \\
& =1.8
\end{aligned}
$$

Hence,

$$
\operatorname{var}(X)=1.8-(1.1)^{2}=0.59
$$

1.5. Two random variables X, Y are related so that $a X+Y=b$ for some real constants a and b. Given $E(X)=\mu, \operatorname{var}(X)=\sigma^{2}$, express $E(Y)$ and $\operatorname{var}(Y)$ in terms of μ and σ.

Answer:
$Y=b-a X$. Therefore:

$$
\begin{aligned}
E[Y] & =E[b-a X] \\
& =b-a E[X] \\
& =b-a \mu
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}(Y) & =E\left[(Y-E[Y])^{2}\right] \\
& =E\left[(b-a X-b+a E[X])^{2}\right] \\
& =E\left[a^{2}(X-E[X])^{2}\right] \\
& =a^{2} \operatorname{var}(X) \\
& =a^{2} \sigma^{2}
\end{aligned}
$$

2. Posterior Probability (10\%)

Two manufacturing plants produce similar parts. Plant 1 produces 1000 parts, 100 of which are defective. Plant 2 produce 2000 parts, 150 of which are defective. A part is selected at random and found to be defective. What is the probability that it came from plant 1?

Answer:
Define the following events:

- $A=$ the part is selected from Plant 1
- $D=$ the part is defective

We wish to find $P(A \mid D)$. The problem statement gives us $P(A)=\frac{1}{3}, P(D \mid A)=\frac{1}{10}$, and $P\left(D \mid A^{c}\right)=\frac{3}{40}$. Bayes' rule:

$$
P(A \mid D)=\frac{P(A \cap D)}{P(D)}=\frac{P(D \mid A) P(A)}{P(D)}
$$

Since $\left\{A, A^{c}\right\}$ partition Ω, we can use the total probability theorem to find $P(D)$:

$$
\begin{gathered}
P(D)=P(D \mid A) P(A)+P\left(D \mid A^{c}\right) P\left(A^{c}\right) \\
=\frac{1}{10} \cdot \frac{1}{3}+\frac{3}{40}\left(1-\frac{1}{3}\right)=\frac{1}{12} \\
P(A \mid D)=\frac{\frac{1}{10} \cdot \frac{1}{3}}{\frac{1}{12}}=\frac{2}{5}
\end{gathered}
$$

3. Posterior Probability (10\%)

A number is selected at random from $1,2, \ldots, 100$. Given that the number selected is divisible by 2 , what is the probability that the number is divisible by 3 or 5 ?
Answer:
Define the following events:

- $B=$ the number is divisible by 2
- $C=$ the number is divisible by 3
- $E=$ the number is divisible by 5

$$
\begin{aligned}
P(C \cup E \mid B) & =\frac{P((C \cup E) \cap B)}{P(B)} \\
& =\frac{P(C \cap B)+P(E \cap B)-P(C \cap E \cap B)}{P(B)} \\
& =\frac{\frac{16}{100}+\frac{10}{100}-\frac{3}{100}}{\frac{50}{100}} \\
& =\frac{23}{50}
\end{aligned}
$$

4. Expectation (15\%)

There is a series of mutually independent Bernoulli experiments that individually have probability p of success and probability $(1-p)$ of failure. These experiments are conducted until the $r^{t h}$ success. Let X be the number of failures that occur until this $r^{t h}$ success. The pmf of X is:

$$
p_{X}(k)=\binom{k+r-1}{k} p^{r}(1-p)^{k}, k \geq 0
$$

a) Justify the pmf.

Answer:
$X=k$ if k failures and $r-1$ successes occur in any order, and then the next experiment is a success. There are $\binom{k+r-1}{k}$ possible orderings where this occurs, and each permutation has probability $p^{r}(1-p)^{k}$. Therefore:

$$
p_{X}(k)=P(X=k)=\binom{k+r-1}{k} p^{r}(1-p)^{k}
$$

b) Express $E(X)$ in terms of p and r.

Answer:
Using the definition of expectation:

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{\infty} k p_{X}(k) \\
& =\sum_{k=0}^{\infty} k \frac{(k+r-1)!}{k!(r-1)!} p^{r}(1-p)^{k}
\end{aligned}
$$

Noticing that k will cancel part of k !, we relate this to $p_{X}(k-1 ; r+1)$, that is the probability that $X=k-1$ in a similar experiment to $r+1$ successes.

$$
\begin{aligned}
E[X] & =\sum_{k=0}^{\infty} \frac{(k+r-1)!}{(k-1)!r!} p^{r+1}(1-p)^{k-1} \cdot r \frac{1-p}{p} \\
& =r \frac{1-p}{p} \sum_{k=0}^{\infty} p_{X}(k-1 ; r+1) \\
& =r \frac{1-p}{p}
\end{aligned}
$$

5. Independence (15\%)

Show that if three events A, B, and C are mutually independent, then A and $B \cup C$ are independent.

Answer:
Events A and $B \cup C$ are independent if and only if $P(A \cap(B \cup C))=P(A) P(B \cup C)$.

$$
\begin{aligned}
P(B \cup C) & =P(B)+P(C)-P(B \cap C) \\
& =P(B)+P(C)-P(B) P(C)
\end{aligned}
$$

because B and C are independent.

$$
\begin{aligned}
P(A) P(B \cup C) & =P(A) P(B)+P(A) P(C)-P(A) P(B) P(C) \\
& =P(A \cap B)+P(A \cap C)-P(A \cap B \cap C) \\
& =P((A \cap B) \cup(A \cap C)) \\
& =P(A \cap(B \cup C))
\end{aligned}
$$

6. Probability Distribution (10%)

Find the allowable range of values for constants a and b such that the following function is a valid CDF

$$
F(x)=1-a e^{-x / b} \text { if } x \geq 0, \text { and } 0 \text { otherwise. }
$$

For those values of a and b, compute $P(-2<X<10)$ where X is the associated random variable.
Answer:
If $a>1$, then $F\left(0^{+}\right)<0$, which would be invalid. If $a<0$, then $F(x)>1$ for $x \geq 0$, which is also invalid. For $\lim _{x \rightarrow \infty} F(x)=1$, we need $b>0$. Therefore $0 \leq a \leq 1$ and $b>0$.

Since $F(x)=P(X<x)$:

$$
\begin{aligned}
P(-2<X<10) & =P(X<10)-P(X<-2) \\
& =F(10)-F(-2) \\
& =1-a e^{-10 / b}-0 \\
& =1-a e^{-10 / b}
\end{aligned}
$$

7. Preemptive Maintenance (20\%)

Assume, for simplicity, that the lifetime of a machine is uniformly distributed in $[0,1]$. If the machine fails, you face a cost equal to C, which includes replacing the machine with a new one. Replacing the machine before it fails with a new one costs $K<C$. You decide to replace the machine after $T<1$ time units or when it fails, whichever comes first.
(a) Let X be the random time when you replace the machine. Calculate $E(X)$ in terms of T. Answer:

We replace the machine after either it fails or it reaches age $T<1$. Let W be the time when the machine fails. If $W<T$, then we face a cost of C after W seconds, whereas if $W>T$, we face a cost K after T seconds. Consequently, we face an average time equal to

$$
E(\min \{T, W\})=\int_{0}^{1} \min \{T, w\} d w=\int_{0}^{T} w d w+\int_{T}^{1} T d w=\frac{1}{2} T^{2}+T(1-T)=T-0.5 T^{2} .
$$

(b) Let Y be the random cost when you replace the machine (either K or C). Calculate $E(Y)$ in terms of T.

Answer:
We face a cost

$$
E[Y]=C \cdot P(W<T)+K \cdot P(W \geq T)=C T+K(1-T)
$$

(c) The average replacement cost per unit of time is $E(Y) / E(X)$. Find the value of T that minimizes that average cost.
Answer:
The average cost per unit of time is equal to

$$
\frac{C T+K(1-T)}{T-0.5 T^{2}}=\frac{K+(C-K) T}{T-0.5 T^{2}} .
$$

To minimize that cost, we set the derivative with respect to T equal to zero. We find

$$
[K+(C-K) T](1-T)=\left(T-0.5 T^{2}\right)(C-K)
$$

so that

$$
K+(C-2 K) T-(C-K) T^{2}=(C-K) T-0.5(C-K) T^{2},
$$

i.e.,

$$
K-K T-0.5(C-K) T^{2}=0
$$

so that

$$
T=\frac{-K+\sqrt{K^{2}+2 K(C-K)}}{C-K}=\frac{-K+\sqrt{2 K C-K^{2}}}{C-K} .
$$

