Department of EECS - University of California at Berkeley EECS 126 - Probability and Random Processes - Fall 2008

Final: 12/20/2008

SOLUTIONS

1. LLSE (5\%)

Let X, Y be i.i.d. and uniformly distributed in $[-1,1]$. Find $L\left[X \mid(X+Y)^{2}\right]$.

Answer. Let $Z=(X+Y)^{2}$. We know that

$$
L[X \mid Z]=E(X)+\frac{\operatorname{cov}(X, Z)}{\operatorname{var}(Z)}(Z-E(X))
$$

Now,

$$
\operatorname{cov}(X, Z)=E(X Z)-E(X) E(Z)=E(X Z)=E\left(X\left(X^{2}+2 X Y+Y^{2}\right)\right)=0 .
$$

Hence,

$$
L\left[X \mid(X+Y)^{2}\right]=0 .
$$

2. LLSE (10\%)

Let X, Y be i.i.d. $N(0,1)$. Find $L\left[X \mid(X+Y)^{3}\right]$.
(Hint: Let V be a $N(0,1)$ random variable. Then $E\left(V^{4}\right)=3, E\left(V^{6}\right)=15, E\left(V^{8}\right)=105$.)

Answer. Let $Z=(X+Y)^{3}$. Then

$$
L[X \mid Z]=E(X)+\frac{\operatorname{cov}(X, Z)}{v a r(Z)}(Z-E(Z))
$$

Now,

$$
\begin{aligned}
& E(X)=E(Z)=0 \\
& \operatorname{cov}(X, Z)=E(X Z)-E(X) E(Z)=E(X Z)=E\left(X\left(X^{3}+3 X^{2} Y+3 X Y^{2}+Y^{3}\right)\right)=3+0+3+0=6 \\
& \operatorname{var}(Z)=E\left(Z^{2}\right)=E\left((\sqrt{2} V)^{6}\right)=(\sqrt{2})^{6} E\left(V^{6}\right)=8 \times 15=120
\end{aligned}
$$

Hence,

$$
L[X \mid Z]=\frac{6}{120} Z=\frac{1}{20} Z
$$

3. MMSE (5\%) Let X, Y be i.i.d. $N(0,1)$. Find $E\left[X \mid(X+Y)^{3}\right]$.

Answer. Let $Z=(X+Y)^{3}$. Given Z, one finds $X+Y=Z^{1 / 3}$. By symmetry, $E[X \mid X+Y]=$ $(X+Y) / 2$. Hence,

$$
E[X \mid Z]=\frac{1}{2} Z^{1 / 3} .
$$

4. MMSE (10\%)

Let X, Y, Z be i.i.d. $N(0,1)$. Calculate $E[X \mid X+3 Y, X+5 Z]$.

Answer. Let $V_{1}=X+3 Y, V_{2}=X+5 Z$, and $\mathbf{V}=\left[V_{1}, V_{2}\right]^{T}$. Then, since X, V_{1}, V_{2} are zero-mean,

$$
E[X \mid \mathbf{V}]=\operatorname{cov}(X, \mathbf{V}) \operatorname{cov}(\mathbf{V})^{-1} \mathbf{V}
$$

Now,

$$
\operatorname{cov}(X, \mathbf{V})=E\left(X \mathbf{V}^{T}\right)=E\left(X\left[V_{1}, V_{2}\right]\right)=E\left(\left[X^{2}+3 X Y, X^{2}+5 X Z\right]\right)=[1,1] .
$$

Also,

$$
\begin{aligned}
& \operatorname{var}\left(V_{1}\right)=\operatorname{var}(X)+\operatorname{var}(3 Y)=1+9=10 \\
& \operatorname{var}\left(V_{2}\right)=\operatorname{var}(X)+\operatorname{var}(5 Z)=1+25=26 \\
& \operatorname{cov}\left(V_{1}, V_{2}\right)=E((X+3 Y)(X+5 Z))=E\left(X^{2}+3 X Y+5 X Z+15 Y Z\right)=1,
\end{aligned}
$$

so that

$$
\Sigma_{\mathbf{V}}:=\operatorname{cov}(\mathbf{V})=\left[\begin{array}{cc}
10 & 1 \\
1 & 26
\end{array}\right]
$$

Hence,

$$
E[X \mid \mathbf{V}]=[1,1]\left[\begin{array}{cc}
10 & 1 \\
1 & 26
\end{array}\right]^{-1} \mathbf{V}=[1,1] \frac{1}{259}\left[\begin{array}{cc}
26 & -1 \\
-1 & 10
\end{array}\right] \mathbf{V}=\frac{1}{259}[25,9] \mathbf{V}
$$

5. $\operatorname{MLE}(10 \%)$

For $i \in\{1,2,3,4\}$, if $X=i$, then $\mathbf{Y}=N\left(\mu_{i}, \sigma^{2} I\right)$ where $\mu_{1}=(-1,-1), \mu_{2}=(1,-1), \mu_{3}=$ $(1,1), \mu_{4}=(-1,1)$. Find the Maximum Likelihood Estimate of X given $\mathbf{Y}=\mathbf{y} \in \Re^{2}$.

Answer. We saw in class that $M L E[X \mid \mathbf{Y}=\mathbf{y}]=\operatorname{argmin}_{i}\left\|\mathbf{y}-\mu_{i}\right\|$ where the norm is the standard Euclidean norm. Accordingly,

$$
M L E[X \mid \mathbf{Y}=\mathbf{y}]=\left\{\begin{array}{l}
1, \text { if } y_{1}<0 \text { and } y_{2}<0 \\
2, \text { if } y_{1} \geq 0 \text { and } y_{2}<0 \\
3, \text { if } y_{1} \geq 0 \text { and } y_{2} \geq 0 \\
4, \text { if } y_{1}<0 \text { and } y_{2} \geq 0 .
\end{array}\right.
$$

6. HT ($\mathbf{1 0 \%}$) If $X=1$, then Y is $N(1,1)$. If $X=0$, then Y is exponentially distributed with mean 1. Find the function \hat{X} of Y that maximizes $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=$ $0] \leq 0.1$.
(Hint: $\cosh (x)=\left(e^{x}+e^{-x}\right) / 2, \sinh (x)=\left(e^{x}-e^{-x}\right) / 2$. You may give the answer in terms of a basic function without evaluating the numerical value.)

Answer. The likelihood ratio is

$$
L(y)=\frac{\phi_{1}(y)}{\phi_{0}(y)}=e^{y} \frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2} .
$$

Thus,

$$
L(y)=A e^{-(y-2)^{2} / 2}
$$

with $A=e^{-3 / 2} / \sqrt{2 \pi}$.
Accordingly,

$$
\hat{X}=1\{L(Y)>\lambda\}=1\{|y-2|<\alpha\}
$$

where α is such that

$$
P[|Y-2|<\alpha \mid X=0]=0.1 .
$$

Now,

$$
\begin{aligned}
& P[|Y-2|<\alpha \mid X=0]=P[Y>2-\alpha \mid X=0]-P[Y>2+\alpha \mid X=0] \\
& \quad=e^{-2-\alpha}-e^{-2-\alpha}=e^{-2}\left[e^{\alpha}-e^{-\alpha}\right]=2 e^{-2} \sinh (\alpha) .
\end{aligned}
$$

Hence,

$$
\alpha=\sinh ^{-1}\left(0.05 e^{2}\right) \approx 0.36
$$

(The last value is found using a calculator.)
Finally,

$$
\hat{X}=1\{1.64<Y<2.36\}
$$

7. CLT (10\%) We want to estimate the probability p that a coin flip yields 'Tail.' We flip the coin $n \gg 1$ times and we let X_{n} denote the fraction of 'Tails.' Assume that we know that p is not far from 0.5 but we want a more precise estimate. Using the Central Limit Theorem, find a value of α so that

$$
P\left(X_{n}-\alpha<p<X_{n}+\alpha\right) \approx 0.95 .
$$

(Hint: If $V=N(0,1)$, then $P(|V|<1.96) \approx 0.95)$.)

Answer. We know, from the CLT, that

$$
\left(X_{n}-p\right) \sqrt{n} \approx N(0, p(1-p)) \approx N\left(0, \frac{1}{4}\right)=\frac{1}{2} V .
$$

Thus,

$$
X_{n}-p \approx \frac{1}{2 \sqrt{n}} V .
$$

Consequently,

$$
P\left(\left|X_{n}-p\right|<\alpha\right) \approx P\left(\frac{1}{2 \sqrt{n}}|V|<\alpha\right)=P(|V|<2 \sqrt{n} \alpha) .
$$

Accordingly, we need

$$
2 \sqrt{n} \alpha \approx 1.96, \text { i.e. }, \alpha \approx \frac{1}{\sqrt{n}} .
$$

Hence, for $n \gg 1$,

$$
P\left(X_{n}-\frac{1}{\sqrt{n}}<p<X_{n}+\frac{1}{\sqrt{n}}\right) \approx 0.95 .
$$

8. Markov Chain (10\%)

Consider a Markov X_{n} on $\{1,2,3,4\}$ such that

$$
P(1,2)=P(2,3)=P(3,4)=P(4,1)=p \text { and } P(2,1)=P(3,2)=P(4,3)=P(1,4)=1-p
$$

where $p \in(0,1)$ is given.
a) Is the Markov chain irreducible? Aperiodic?
b) Find the invariant distribution π.
c) Calculate the average time it takes the Markov chain to go from 1 to 3 .
d) What is the probability that the Markov chain goes from 1 to 3 without first visiting 4 ?

Answer. a) The Markov chain is irreducible and periodic with period 2.
b) By symmetry, it must be that $\pi=[1 / 4,1 / 4,1 / 4.1 / 4]$.
c) Let $\beta(i)$ be the mean time from $X_{0}=i$ to 3 . We find

$$
\begin{aligned}
& \beta(1)=1+p \beta(2)+(1-p) \beta(4) \\
& \beta(2)=1+p \times 0+(1-p) \beta(1) \\
& \beta(4)=1+p \beta(1)+(1-p) \times 0 .
\end{aligned}
$$

Substituting the values for $\beta(2)$ and $\beta(4)$ found the the last two equations into the first one, we find

$$
\beta(1)=1+p[1+(1-p) \beta(1)]+(1-p)[1+p \beta(1)] .
$$

Regrouping terms, we find

$$
\beta(1)=2[1-2 p(1-p)]^{-1},
$$

which is the desired answer.
d) Let $\alpha(i)$ denote the probability that the Markov chain started in $X_{0}=i$ visits state 3 before visiting state 4. We find

$$
\begin{aligned}
& \alpha(1)=p \alpha(2)+(1-p) \times 0 \\
& \alpha(2)=p+(1-p) \alpha(1)
\end{aligned}
$$

Substituting the expression for $\alpha(2)$ given by the last equation into the first one, we find

$$
\alpha(1)=p[p+(1-p) \alpha(1)]=p^{2}+p(1-p) \alpha(1) .
$$

That is,

$$
\alpha(1)=p^{2}[1-p(1-p)]^{-1} .
$$

9. Conditional Expectation (10\%) Random variables X and Y are jointly distributed such that X is uniformly distributed on $[0,2]$ and, conditioned on X, Y is then uniform on $[0, X]$. What is $E[X \mid Y]$?
(Note: Be sure you solve for $E[X \mid Y]$, not $E[Y \mid X]$.)

Answer. Start from the definition of conditional expectation:

$$
\begin{aligned}
E[X \mid Y=y] & =\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\
f_{X \mid Y}(x \mid y) & =\frac{f_{X Y}(x, y)}{f_{Y}(y)}
\end{aligned}
$$

We will solve for marginal distribution $f_{Y}(y)$ by way of the joint distribution $f_{X Y}(x, y)$:

$$
\begin{aligned}
f_{X Y}(x, y) & =f_{Y \mid X}(y \mid x) f_{X}(x) \\
& =\frac{1}{x} \frac{1}{2}, \quad 0 \leq y \leq x, \quad 0 \leq x \leq 2
\end{aligned}
$$

Note that this triangle can also be described by $0 \leq y \leq 2, y \leq x \leq 2$.

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} f_{X Y}(x, y) d x \\
& =\int_{y}^{2} \frac{1}{2 x} d x \\
& =\left.\frac{1}{2} \ln x\right|_{x=y} ^{2} \\
& =\frac{\ln 2-\ln y}{2}, \quad 0 \leq y \leq 2 \\
f_{X \mid Y}(x \mid y) & =\frac{1}{x} \frac{1}{\ln 2-\ln y}, \quad 0 \leq y \leq 2, \quad y \leq x \leq 2 \\
E[X \mid Y=y] & =\int_{y}^{2} x \frac{1}{x} \frac{1}{\ln 2-\ln y} d x \\
& =\frac{2-y}{\ln 2-\ln y}
\end{aligned}
$$

10. MAP (10\%) You are told that random variables X and Y are distributed as follows:

$$
\begin{aligned}
& f_{X}(x)= \begin{cases}a x^{2}, & 0 \leq x \leq 3 \\
0, & \text { otherwise }\end{cases} \\
& f_{Y \mid X}(y \mid x)=x e^{-x y}, \quad 0 \leq x \leq 3, \quad 0<y
\end{aligned}
$$

where a is some constant. Find a and the MAP estimate for X based on observation Y.

Answer. Since $f_{X}(x)$ is a probability distribution, its integral should equal 1.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f_{X}(x) d x & =\int_{0}^{3} a x^{2} d x \\
& =\left.a \frac{x^{3}}{3}\right|_{x=0} ^{3} \\
& =9 a=1 \quad \Rightarrow a=\frac{1}{9}
\end{aligned}
$$

The MAP estimate is:

$$
\begin{aligned}
\hat{x} & =\underset{x}{\operatorname{argmax}} f_{X \mid Y}(x \mid y) \\
& =\underset{x}{\operatorname{argmax}} \frac{f_{Y \mid X}(y \mid x) f_{X}(x)}{f_{Y}(y)} \\
& =\underset{x}{\operatorname{argmax}} f_{Y \mid X}(y \mid x) f_{X}(x) \\
& =\underset{0 \leq x \leq 3}{\operatorname{argmax}} x e^{-x y} \frac{x^{2}}{9} \\
& =\underset{0 \leq x \leq 3}{\operatorname{argmax}} e^{-x y} \frac{x^{3}}{9}
\end{aligned}
$$

We maximize this by differentiating with respect to x and setting equal to 0 :

$$
\begin{aligned}
\frac{\partial}{\partial x} e^{-x y} \frac{x^{3}}{9} & =-y e^{-x y} \frac{x^{3}}{9}+e^{-x y} \frac{x^{2}}{3} \\
& =(-x y+3) e^{-x y} \frac{x^{2}}{9}=0
\end{aligned}
$$

For $y>0$, this has solutions $x=\frac{3}{y},+\infty$, and 0 . However, only for the case $x=\frac{3}{y}$ is $f_{X \mid Y}(x \mid y)$ positive (the other two are 0). Therefore, $\hat{x}=\frac{3}{y}$ if $0 \leq \frac{3}{y} \leq 3 \rightarrow y \geq 1$. For $0<y<1, \frac{3}{y}>3$ so we know $f_{X \mid Y}(x \mid y)$ is increasing over $0 \leq x \leq 3$, and we choose $\hat{x}=3$. Therefore the MAP estimator is:

$$
\hat{x}= \begin{cases}3, & 0<y<1 \\ \frac{3}{y}, & 1 \leq y\end{cases}
$$

11. ($\mathbf{1 0 \%}$). Note: This problem is quite difficult and its solution is not very short.

When $X=1$, a machine produces electric light bulbs with i.i.d. exponential lifetimes with a mean less than one year. When $X=0$, their mean lifetime is equal to one year. You measure the lifetimes Y_{1}, \ldots, Y_{n} of $n \gg 1$ light bulbs. You decide $\hat{X} \in\{0,1\}$ based on the observed lifetimes.

1) Construct \hat{X} to maximize $P[\hat{X}=1 \mid X=1]$ subject to $P[\hat{X}=1 \mid X=0] \leq 5 \%]$.
2) Assume that when $X=1$ the mean life time is 0.9 year. How large should n be so that $P[\hat{X}=1 \mid X=1] \geq 95 \%$?
(Hints: Use the CLT. Tables show that $P(N(0,1)>1.64)=5 \%, P(N(0,1)>1.96)=2.5 \%, P(N(0,1)>$ $2.33)=1 \%, P(N(0,1)>2.53)=0.5 \%$. Also, the variance of an exponentially distributed random variable with rate μ is $1 / \mu^{2}$.)

Answer. 1) For any given mean lifetime less than one year when $X=1$, the likelihood ratio is decreasing in $Y_{1}+\cdots+Y_{n}$. Consequently,

$$
\hat{X}=1\left\{\frac{Y_{1}+\cdots+Y_{n}}{n} \leq A\right\}
$$

where A is such that

$$
P\left[\left.\frac{Y_{1}+\cdots+Y_{n}}{n} \leq A \right\rvert\, X=0\right]=5 \% .
$$

Now,

$$
P\left[\left.\frac{Y_{1}+\cdots+Y_{n}}{n} \leq A \right\rvert\, X=0\right]=P\left(\frac{Z_{1}+\cdots+Z_{n}}{n} \leq A\right)
$$

where Z_{1}, Z_{2}, \ldots are i.i.d. exponentially distributed with mean 1. Also,

$$
P\left(\frac{Z_{1}+\cdots+Z_{n}}{n} \leq A\right)=P\left(\left[\frac{Z_{1}+\cdots+Z_{n}}{n}-1\right] \sqrt{n} \leq(A-1) \sqrt{n}\right) .
$$

But, by the CLT,

$$
\left[\frac{Z_{1}+\cdots+Z_{n}}{n}-1\right] \sqrt{n} \approx N\left(0, \operatorname{var}\left(Z_{1}\right)\right)=N(0,1) .
$$

Hence,

$$
P\left(\frac{Z_{1}+\cdots+Z_{n}}{n} \leq A\right) \approx P(N(0,1) \leq(A-1) \sqrt{n}) .
$$

For this probability to equal to 5%, we need

$$
(A-1) \sqrt{n}=-1.64, \text { or } A=1-\frac{1.64}{\sqrt{n}} .
$$

Hence,

$$
\hat{X}=1\left\{\frac{Y_{1}+\cdots+Y_{n}}{n} \leq 1-\frac{1.64}{\sqrt{n}}\right\} .
$$

2) We find that

$$
P[\hat{X}=1 \mid X=1]=P\left[\left.\frac{Y_{1}+\cdots+Y_{n}}{n} \leq A \right\rvert\, X=1\right]=P\left(\frac{V_{1}+\cdots+V_{n}}{n} \leq A\right)
$$

where the V_{m} are i.i.d. exponentially distributed with mean 0.9 year. Now,

$$
P\left(\frac{V_{1}+\cdots+V_{n}}{n} \leq A\right)=P\left(\left[\frac{V_{1}+\cdots+V_{n}}{n}-0.9\right] \sqrt{n} \leq(A-0.9) \sqrt{n}\right) .
$$

But, by the CLT,

$$
\left[\frac{V_{1}+\cdots+V_{n}}{n}-0.9\right] \sqrt{n} \approx N\left(0, \operatorname{var}\left(V_{1}\right)\right)=N\left(0,(0.9)^{2}\right)
$$

Hence,

$$
P[\hat{X}=1 \mid X=1] \approx P\left(N\left(0,(0.9)^{2}\right) \leq(A-0.9) \sqrt{n}\right)=P\left(N(0,1) \leq \frac{(A-0.9) \sqrt{n}}{0.9}\right) .
$$

Thus, for this probability to be 95%, we need

$$
\frac{(A-0.9) \sqrt{n}}{0.9}=1.64
$$

so that

$$
A=\frac{1.64 \times 0.9}{\sqrt{n}}+0.9
$$

Combining with the expression for A derived in part 1), we find

$$
1-\frac{1.64}{\sqrt{n}}=\frac{1.64 \times 0.9}{\sqrt{n}}+0.9
$$

Solving for n we find

$$
n=\left[\frac{1.64 \times 1.9}{0.1}\right]^{2} \approx 971
$$

