Department of EECS - University of California at Berkeley EECS126 - Probability and Random Processes - Fall 2003

Midterm No. 2: 11/14/2003

SOLUTIONS

There are five questions, worth 20% each. Answer on these sheets. Show your work. Good luck.

Question 1. Let $\{X, Y, Z\}$ be independent $N(0,1)$ random variables.
a.(14\%) Calculate

$$
E[3 X+5 Y \mid 2 X-Y, X+Z]
$$

b. (6%) How does the expression change if X, Y, Z are i.i.d. $N(1,1)$?
a. Let $V_{1}=2 X-Y, V_{2}=X+Z$ and $\mathbf{V}=\left[V_{1}, V_{2}\right]^{T}$. Then

$$
E[3 X+5 Y \mid \mathbf{V}]=\mathbf{a} \Sigma_{V}^{-1} \mathbf{V}
$$

where

$$
\mathbf{a}=E\left((3 X+5 Y) \mathbf{V}^{T}\right)=[1,3]
$$

and

$$
\Sigma_{V}=\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right]
$$

Hence,

$$
\begin{aligned}
E[3 X+5 Y \mid \mathbf{V}] & =[1,3]\left[\begin{array}{ll}
5 & 2 \\
2 & 2
\end{array}\right]^{-1} \mathbf{V}=[1,3] \frac{1}{6}\left[\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right] \mathbf{V} \\
=\frac{1}{6}[-4,13] \mathbf{V} & =-\frac{2}{3}(2 X-Y)+\frac{13}{6}(X+Z)
\end{aligned}
$$

b. Now,

$$
\begin{aligned}
& E[3 X+5 Y \mid \mathbf{V}]=E(3 X+5 Y)+\mathbf{a} \Sigma_{V}^{-1}(\mathbf{V}-E(\mathbf{V}))=8+\frac{1}{6}[-4,13]\left(\mathbf{V}-[1,2]^{T}\right) \\
& \quad=\frac{26}{6}-\frac{2}{3}(2 X-Y)+\frac{13}{6}(X+Z)
\end{aligned}
$$

Question 2. 25%. Let X, Y be independent random variables uniformly distributed in $[0,1]$. Calculate $L\left[Y^{2} \mid 2 X+Y\right]$.

One has

$$
\begin{aligned}
& L\left[Y^{2} \mid 2 X+Y\right]=E\left(X^{2}\right)+\frac{E\left(Y^{2}(2 X+Y)\right)-E\left(Y^{2}\right) E(2 X+Y)}{\operatorname{var}(2 X+Y)}(2 X+Y-E(2 X+Y)) \\
& \quad=\frac{1}{3}+\frac{1 / 3+1 / 4-(1 / 3)(3 / 2)}{4(1 / 3-1 / 4)+(1 / 3-1 / 4)}(2 X+Y-3 / 2)
\end{aligned}
$$

Question 3. 15%. Let $\left\{X_{n}, n \geq 1\right\}$ be independent $N(0,1)$ random variables. Define $Y_{n+1}=a Y_{n}+(1-a) X_{n+1}$ for $n \geq 0$ where Y_{0} is a $N\left(0, \sigma^{2}\right)$ random variable independent of $\left\{X_{n}, n \geq 0\right\}$. Calculate

$$
E\left[Y_{n+m} \mid Y_{0}, Y_{1}, \ldots, Y_{n}\right]
$$

for $m, n \geq 0$.
Hint: First argue that observing $\left\{Y_{0}, Y_{1}, \ldots, Y_{n}\right\}$ is the same as observing $\left\{Y_{0}, X_{1}, \ldots, X_{n}\right\}$. Second, get an expression for Y_{n+m} in terms of $Y_{0}, X_{1}, \ldots, X_{n+m}$. Finally, use the independence of the basic random variables.

One has

$$
\begin{aligned}
Y_{n+1} & =a Y_{n}+(1-a) X_{n+1} ; \\
Y_{n+2} & =a Y_{n+1}+(1-a) X_{n+2}=a^{2} Y_{n}+(1-a) X_{n+2}+(1-a)^{2} X_{n+1} \\
& \cdots \\
Y_{n+m} & =a^{m} Y_{n}+(1-a) X_{n+m}+(1-a)^{2} X_{n+m-1}+\cdots+(1-a)^{m} X_{n+1}
\end{aligned}
$$

Hence,

$$
E\left[Y_{n+m} \mid Y_{0}, Y_{1}, \ldots, Y_{n}\right]=a^{m} Y_{n}
$$

Question 4. 20%. Given θ, the random variables $\left\{X_{n}, n \geq 1\right\}$ are i.i.d. $U[0, \theta]$. Assume that θ is exponentially distributed with rate λ.
a. Find the MAP $\hat{\theta}_{n}$ of θ given $\left\{X_{1}, \ldots, X_{n}\right\}$.
b. Calculate $E\left(\left|\theta-\hat{\theta}_{n}\right|\right)$.

One finds that

$$
f[x \mid \theta] f(\theta)=\frac{1}{\theta^{n}} 1\left\{x_{k} \leq \theta, k=1, \ldots, n\right\} \lambda e^{-\lambda \theta} .
$$

Hence,

$$
\hat{\theta}_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\} .
$$

Consequently, by symmetry,

$$
E\left[\theta-\hat{\theta}_{n} \mid \theta\right]=\frac{1}{n+1} \theta
$$

Finally,

$$
\left.E\left(\left|\theta-\hat{\theta}_{n}\right|\right)=E\left(E\left[\theta-\hat{\theta}_{n} \mid \theta\right]\right)\right)=\frac{1}{\lambda(n+1)}
$$

A few words about the symmetry argument. Consider a circle with a circumference length equal to 1 . Place $n+1$ point independently and uniformly on that circumference. By symmetry, the average distance between two points is $1 /(n+1)$. Pick any one point and open the circle at that point, calling one end 0 and the other end 1 . The other n points are distributed independently and uniformly on $[0,1]$. So, the average distance between 1 and the closest point in $1 /(n+1)$. Of course, we could do a direct calculation.

Question 5. 20%. Let (X, Y) be jointly Gaussian. Show that $X-E[X \mid Y]$ is Gaussian and calculate its mean and variance.

We know that

$$
E[X \mid Y]=E(X)+\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)}(Y-E(Y))
$$

Consequently,

$$
X-E[X \mid Y]=X-E(X)-\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)}(Y-E(Y))
$$

and is certainly Gaussian. This difference is zero-mean. Its variance is

$$
\operatorname{var}(X)+\left[\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)}\right]^{2} \operatorname{var}(Y)-2 \frac{\operatorname{cov}(X, Y)}{\operatorname{var}(Y)} \operatorname{cov}(X, Y)=\operatorname{var}(X)-\frac{[\operatorname{cov}(X, Y)]^{2}}{\operatorname{var}(Y)}
$$

