Department of EECS - University of California at Berkeley
EECS 126 - Probability and Random Processes - Fall 2003
Midterm No. 2: 11/14/2003

There are five questions, worth $20 \%$ each. Answer on these sheets. Show your work. Good luck.

Question 1. Let $\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$ be independent $\mathrm{N}(0,1)$ random variables.
a. (14\%) Calculate
$\mathrm{E}[3 \mathrm{X}+5 \mathrm{Y} \mid 2 \mathrm{X}-\mathrm{Y}, \mathrm{X}+\mathrm{Z}]$.
b. (6\%) How does the expression change if $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are i.i.d. $\mathrm{N}(1,1)$ ?

Question 2. 25\%. Let X , Y be independent random variables uniformly distributed in $[0,1]$. Calculate $\mathrm{L}\left[\mathrm{Y}^{2} \mid 2 \mathrm{X}+\mathrm{Y}\right]$.

Question 3. 15\%. Let $\left\{X_{n}, \mathrm{n} \geq 1\right\}$ be independent $\mathrm{N}(0,1)$ random variables. Define $Y_{n+1}=a Y_{n}+(1-a) X_{n+1}$ for $n \geq 0$ where $Y_{0}$ is a $N\left(0, \sigma^{2}\right)$ random variable independent of $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n} \geq 0\right\}$. Calculate

$$
\mathrm{E}\left[\mathrm{Y}_{\mathrm{n}+\mathrm{m}} \mid \mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right]
$$

for $\mathrm{m}, \mathrm{n} \geq 0$.

Hint: First argue that observing $\left\{\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right\}$ is the same as observing $\left\{\mathrm{Y}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$.
Second, get an expression for $\mathrm{Y}_{\mathrm{n}+\mathrm{m}}$ in terms of $\mathrm{Y}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}+\mathrm{m}}$. Finally, use the independence of the basic random variables.

Question 4. 20\%. Given $\theta$, the random variables $\left\{X_{n}, \mathrm{n} \geq 1\right\}$ are i.i.d. $\mathrm{U}[0, \theta]$. Assume that $\theta$ is exponentially distributed with rate $\lambda$.
a. Find the MAP ${ }^{\wedge} \theta_{\mathrm{n}}$ of $\theta$ given $\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}$.
b. Calculate $E\left(\left|\theta-{ }^{\wedge} \theta_{n}\right|\right)$.

Question 5. 20\%. Let (X, Y) be jointly Gaussian. Show that $\mathrm{X}-\mathrm{E}[\mathrm{X} \mid \mathrm{Y}]$ is Gaussian and calculate its mean and variance.

