Department of EECS - University of California at Berkeley EECS126 - Probability and Random Processes - Fall 2003 Midterm No. 2: 11/14/2003

There are five questions, worth 20% each. Answer on these sheets. Show your work. Good luck.

Question 1. Let {X, Y, Z} be independent N(0, 1) random variables. a. (14%) Calculate E[3X + 5Y | 2X - Y,X + Z]. b. (6%) How does the expression change if X, Y, Z are i.i.d. N(1, 1)? **Question 2.** 25%. Let X, Y be independent random variables uniformly distributed in [0, 1]. Calculate $L[Y^2 | 2X + Y]$.

Question 3. 15%. Let $\{X_n, n \ge 1\}$ be independent N(0, 1) random variables. Define $Y_{n+1} = aY_n + (1 - a)X_{n+1}$ for $n \ge 0$ where Y_0 is a $N(0, \sigma^2)$ random variable independent of $\{X_n, n \ge 0\}$. Calculate

 $E[Y_{n+m}|Y_0, Y_1, \ldots, Y_n]$

for m, $n \ge 0$.

Hint: First argue that observing $\{Y_0, Y_1, \ldots, Y_n\}$ is the same as observing $\{Y_0, X_1, \ldots, X_n\}$.

Second, get an expression for Y_{n+m} in terms of $Y_{0,X_1, \ldots, X_{n+m}}$. Finally, use the independence of the basic random variables.

Question 4. 20%. Given θ , the random variables $\{X_n, n \ge 1\}$ are i.i.d. U[0, θ]. Assume that θ is exponentially distributed with rate λ . a. Find the MAP $\hat{\theta}_n$ of θ given $\{X_1, \ldots, X_n\}$. b. Calculate $E(|\theta - \hat{\theta}_n|)$. **Question 5.** 20%. Let (X, Y) be jointly Gaussian. Show that X - E[X | Y] is Gaussian and calculate its mean and variance.