Department of EECS - University of California at Berkeley

EECS126 - Probability and Random Processes - Fall 2003
Midterm No. 1: 10/3/2003

Name and SID:

There are six questions. Answer on these sheets. Show your work. Good luck.

Question 1 (15\%). Is it true that

$$
P(A \cap B \cap C)=P[A \mid B] P[B \mid C] P(C) ?
$$

If true, provide a proof; if false, provide a counterexample.

Question 2 (15\%). Describe the probability space $\{\Omega, \mathcal{F}, P\}$ that corresponds to the random experiment "picking five cards without replacement from a perfectly shuffled 52-card deck."

Question $3 \mathbf{(2 0 \%})$. Choose X in $[0,1]$ as follows. With probability $0.2, X=0.3$; with probability $0.3, X=0.7$; otherwise, X is uniformly distributed in $[0,0.5] \cup[0.6,0.9]$. (a). Plot the c.d.f. of X; (b) Find $E(X)$; (c) Find $\operatorname{var}(X)$; (d) Calculate $P[X \leq 0.8 \mid X \geq 0.4]$.

Question $4 \mathbf{(1 5 \%)}$) Let (X, Y) be the coordinates of a point picked randomly and uniformly in $[0,1]^{2}$. Calculate $P[X+2 Y \leq 1 \mid 2 X+Y \leq 1]$.

Question $5 \mathbf{(1 5 \%)}$. Let X be a random variable that is exponentially distributed with mean 1. Calculate $P[X \in[1,4] \mid X \in[3,5]]$.

Question $6 \mathbf{(2 0 \%})$. Let (X, Y) be the coordinates of a point picked uniformly in $\left\{(x, y) \in \Re^{2} \mid x^{2}+y^{2} \leq 1\right\}$. Calculate $E(|X|)$.
(Hint: First find f_{Y} where $Y=|X|$. To do that, look at the set of outcomes such that $Y \in(x, x+d x)$ and determine its probability.)

