EE 126, Fall 2001 Midterm \#2 Professor Anantharam

The exams starts at 3:40 p.m. sharp and ends at 5:00 p.m. sharp.
There are 5 problems. The maximum score is 50 points.
The exam is open book and notes.

Problem \#1-25 points

For each of the following statements, indicate whether you believe that the statement is true or believe it is false, and give a brief explanation of your reasoning. A correct answer without a valid explanation gets 1 points. A correct answer with a valid explanation gets 5 points.
(a) If X is a Gaussian random variable the $X, 2 X$, and $3 X$ are jointly Gaussian random variables.
(b) Let X, Y, and Z be random variables, which you may assume have a joint density. Let $W=Y+Z$. Then

$$
E[W \mid X]=E[Y \mid X]+E[Z \mid X]
$$

(c) Let X, Y, and Z be random variables, which you may assume have a joint density. Let $W=Y+Z$. Then

$$
E[X \mid W]=E[X \mid Y]+E[X \mid Z]
$$

(d) If X is Gaussian and Y is uncorrelated with X, then X and Y are independent.
(e) If Gaussian random variables X and Y have the same mean and the same second moment then they have the same fourth moment.

Problem \#2-7 points

Let $X \sim N(2,2)$. Let the conditional density of Y given X be given by

$$
f Y_{\mid} X(y \mid x)=\left(1 /\left((3 / 21 / 2) *(2 * \mathrm{PI})^{1 / 2}\right)\right)^{*} e(-1 / 2)^{*}(2 / 9) *\left(y-(1 / 2)^{*}(\mathrm{x}-2)-3\right) 2,
$$

i.e. conditional on X, Y is Gaussian with mean $(1 / 2)(X-2)+3$ and variance $9 / 2$. Find the density of Y.

Problem \#3-6 points

I throw three darts at a disk of radius R_{0} centered at the origin. Each dart lands on the disk and the point at which it lands is distributed according to

$$
f R \text { THETA }(\mathrm{r}, \text { theta })=\left\{\quad \left(3 * \mathrm{r}^{2} /\left(2 * \mathrm{PI}^{*} \mathrm{R}_{0}{ }^{3}\right) \quad \text { if } 0<=\mathrm{r}<=\mathrm{R}_{0} \text { and }-\mathrm{PI}<=\mathrm{THETA}<=\mathrm{PI}\right.\right.
$$

Problem \#4-7 points

X and Y are jointly Gaussian mean zero random variables. You are told that the the variance of $X+Y$ is 1 , the variance of $X-Y$ is 1 , and the $\operatorname{Cov}(X+Y, X-Y)=0$. Find the joint density of X and Y.

Problem \#5-5 points

X and Y are independent random variables, each of which is exponentially distributed with parameter 1. Find the linear MSE estimate of $X+Y$ given $X-Y$.

> Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
> If you have any questions about these online exams
> please contact examfile@hkn.eecs.berkeley.edu.

