Midterm 2 Solutions

EE126 - Fall 2000

Problem 1.

$$
\begin{gathered}
X, Y \sim u n i f(-1,1) \\
Z=X Y
\end{gathered}
$$

Let $U=X$ and $V=X Y$ and form the jacobian for $f_{U V}(u, v)$.

$$
f_{U V}=\frac{1}{|U|} f_{X Y}(u, v / u)
$$

Marginalize with respect to u and employ the independence of X and Y .

$$
\begin{gathered}
f_{V}(v)=f_{Z}(z)=\int_{-\infty}^{+\infty} \frac{1}{|U|} f_{X}(u) f_{Y}(z / u) d u \\
f_{Z}(z)=\int_{-\infty}^{+\infty} \frac{1}{2|U|} f_{Y}(z / u) d u
\end{gathered}
$$

The domain for f_{Y} is bounded away from 0 by the z / u term.
First consider $z>0$ for $f_{Y}(z / u) \neq 0,1>|u|>z$. Therefore, the integral above can be completed for $z>0$ by splitting it up into when $z<u<1$ and $-1<u<-z$.
so, for $z>0$

$$
\begin{gathered}
f_{Z}(z)=\int_{z}^{1} \frac{1}{4 U} d u+\int_{-1}^{-z} \frac{1}{-4 U} d u \\
f_{Z}(z)=\int_{z}^{1} \frac{1}{2 U} d u \\
f_{Z}(z)=-\frac{1}{2} \ln (z)
\end{gathered}
$$

now, similarly, for $z<0$

$$
\begin{gathered}
f_{Z}(z)=\int_{-1}^{-z} \frac{1}{4 U} d u+\int_{z}^{1} \frac{1}{-4 U} d u \\
f_{Z}(z)=\int_{z}^{1} \frac{1}{-2 U} d u
\end{gathered}
$$

$$
f_{Z}(z)=-\frac{1}{2} \ln (-z)
$$

so

$$
f_{Z}(z)=-\frac{1}{2} \ln (|z|)
$$

it is undefined for $\mathrm{z}=0$, but that's ok, because it happens with a probability of 0 . The integral can be evaluated in a closed form though.
b)
since X is independent of Y

$$
E[X Y]=E[X] E[Y]=0
$$

Problem 2.

$$
\begin{gathered}
P(T>t)=\frac{1}{1+t} \\
F(t)=\frac{t}{1+t} \\
f_{T}(t)=\frac{d F_{T}}{d t}=\frac{1}{(1+t)^{2}}
\end{gathered}
$$

b.

$$
\begin{gathered}
P(\text { atleast } 1 \text { bulbworkingatt }=9 \text { givenworkingatt }=1) \\
=1-P(0 \text { workingatt }=9 \mid 4 \text { workingatt }=1) \\
=\frac{P(0 \text { att }=9,4 \text { att }=1)}{P(4 a t t=1)} \\
P(t<9, t>1)=\frac{t_{2}}{t_{2}+1}-\frac{1}{1+t_{1}}=\frac{2}{5} \\
P(t>1)=\frac{1}{2} \\
P(0 w o r k i n g a t t=9 \mid \text { allworkingatt }=1)=\frac{4}{5} \\
P(\text { atleast } 1 \text { bulb } \ldots)=1-\frac{4}{5}
\end{gathered}
$$

c.

$$
\begin{gathered}
Z=\min \left(T_{1}, T_{2}, T_{3}, T_{4}\right) \\
P(Z=t)=\binom{4}{1} P\left(T_{1}=t\right) P\left(T_{2}>t\right) P\left(T_{3}>t\right) P\left(T_{3}>t\right)
\end{gathered}
$$

$$
f_{T}(t)=\frac{4}{(1+t)^{5}}
$$

d.

Consider 1 case:

$$
f_{Z}(t)=P\left(T_{1}=t\right) P\left(T_{2}<t\right) P\left(T_{3}<t\right) P\left(T_{4}>t\right)
$$

there are 3 combinations that have $T_{1}=t$ and 4 positions for $T_{X}=t$ so...

$$
\begin{gathered}
f_{Z}(t)=12 \frac{1}{(1+t)^{2}}\left(\frac{t}{1+t}\right)^{2} \frac{1}{1+t} \\
=\frac{12 t^{2}}{(1+t)^{5}}
\end{gathered}
$$

Problem 3.

Consider $X+Y$ Since this is also a gaussian distribution. It is appropriate to find if it is independent of $X-Y$.

$$
E[(X-Y)(X+Y)]=E\left[X^{2}\right]-E\left[Y^{2}\right]=1-1=0
$$

and since

$$
\begin{gathered}
f(X-Y) \amalg g(X+Y) \\
E\left[(X+Y)^{4} \mid X-Y\right]=E\left[(X+Y)^{4}\right]
\end{gathered}
$$

After expansion and noting that $\mathrm{E}[\mathrm{X}]=\mathrm{E}[\mathrm{Y}]=0$ and X and Y are independent...

$$
=E\left[X^{4}\right]+E\left[Y^{4}\right]+6 E\left[X^{2} Y^{2}\right]=3+3+6=12
$$

Problem 4.

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}}, \phi=\arctan \left(\frac{y}{x}\right) \\
x=r \cos (\phi), y=r \sin (\phi)
\end{gathered}
$$

forming the inverse jacobian...

$$
J=\left[\begin{array}{cc}
\cos (\phi) & \sin (\phi) \\
-\sin (\phi) & \cos (\phi)
\end{array}\right]
$$

Taking the determinat gives $J^{-1}=r$

$$
f_{r \phi}(r, \phi)=r \cdot f_{X Y}(r \cos (\phi), r \sin (\phi))
$$

Problem 5. extra credit

The characteristic function of a Poission rv is...

$$
G(s)=\exp (\lambda(s-1))
$$

The sum of two independent rv's is the product of their characteristic functions...

$$
\begin{aligned}
H(s)= & \exp (a(s-1)) \cdot \exp (b(s-1) \\
& =\exp ((a+b)(s-1))
\end{aligned}
$$

so, converting back the characteristic function, which is in standard form...

$$
f_{Z}(k)=\frac{(a+b)^{k}}{k!} \exp (-(a+b) k)
$$

