EE126, Fall 2000 Miderm \#1 Professor Chang-Hasnain

Problem \#1 (20 pts)

Given $\mathrm{P}[\mathrm{AlB}]=\mathrm{a}$
\ \ P[B]=b
\ \& $n b s p P\left[\left(\mathrm{~B}^{\wedge} \mathrm{c}\right)\left(\mathrm{A}^{\wedge} \mathrm{c}\right)\right]=\mathrm{e}$
Express P[B|A] in terms of a, b, e.

Problem \#2 (20 pts)

A telephone transmission system typically consists of an equipment called a multiplexer, which is capable of multiplexing M active phone lines at a given time. Consider an active phone line transmits 1 packet per fixed time period T, and an inactive phone line, 0 packet per T .

Consider an apartment complex with 48 phone lines; the probability of each line transmitting signal is p, and not transmitting signal is $l-p$, where $p=1 / 3$. Let X be the number of packets transmitted per T , and X is a binomial random variable.
$\left(\right.$ Hint: $\left.\mathrm{P}[\mathrm{X}=\mathrm{k}]=\{\mathrm{n}!/[(\mathrm{n}-\mathrm{k})!\mathrm{k}!]\}^{*}\left(p^{\wedge} \mathrm{k}\right)^{*}\left[(1-p)^{\wedge}(\mathrm{n}-\mathrm{k})\right]\right)$
(a) (6 pts) Write down the expressions of the pdf and cdf of X
(b) (7 pts) What is $\mathrm{P}[\mathrm{X}>24]$? Express this in formula; you don't need to provide numeric value.
(c) (7 pts) If this apartment decides to use an M-line multiplexer for its transmission system and M (Hint: fraction of lost packes $=$ number of discarded packets/total number of packets produced)

Problem \#3 (20 pts)

A biased coin is tossed. What is the probability that you have to flip it exactly 8 times to see exactly 3 heads? P (Heads) $=0.6$.

Problem \#4 (20 pts)

There are 5 accidents/month on a highway. Accidents on this highway are distributed as a Poisson random variable. Find the probability there will be no accidents in a given year.

Problem \#5 (20 pts)

Tom and Paul roll (2) dice alternatively starting with Tom. Consider they use two fair 6 -faced dice. The player who rolls 6 first wins. They continue to roll until one of them wins. Find the probability that Tom wins.

Problem \#6 Extra Credit (10 pts)

The occurrence of event B makes A less likely (i.e. P(AIB)\&\#60P(B)). Does the occurrence of event A make B more likely, less likely, or doesn't it matter? Justify your answer.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

