Exam 2

- If we can't read it, we can't grade it.
- We can only give partial credit if you write out your derivations and reasoning in detail.
- You may use the back of the pages of the exam if you need more space.

*** GOOD LUCK! ***

Problem	Points earned	out of
Problem 1	20	20
Problem 2	20	20
Problem 3	-11	20
Problem 4	10	25
Problem 5	0	15
Total		100

Partial Credit.

Partial credit will be given only if there is sufficient information in your work. In general, a good way to show that you understand what's going on is for example to provide plots, sketches, and formulas for *intermediate* signals. That way, if you make an error somewhere along the way, we can trace it and evaluate whether or not you understood the basics of the problem.

Useful Formulae.

• For the continuous-time box function,

$$b(t) = \begin{cases} 1, & -T \le t \le T \\ 0, & \text{otherwise} \end{cases}$$
 (1)

the (continuous-time) Fourier transform is given by

$$B(j\Omega) = \frac{2\sin(\Omega T)}{\Omega}.$$
 (2)

• $\tan(\pi/4) = 1$

Given the phase characteristics of a generalized linear phase FIR filter $H_d(e^{j\omega})$ shown below, answer the following questions. Include brief explanations to get credit.

(a) (6 pts) Is this a symmetric (i.e., Type-II or Type-II) or an anti-symmetric (i.e., Type-III or Type-IV) filter? Why?

Slope =
$$\frac{-\pi_2}{\pi_2} = -1 \rightarrow \alpha = 1 \rightarrow m = 2$$
 (even)

(b) (8 pts) Can the filter length be determined from the given information? If yes, what is the length? If not, why not?

$$M = 2x = 2.1 = 2$$

(c) (6 pts) The filter magnitude response has a DC gain of 1. True or False? Why?

$$|h(0)| = 1 \rightarrow |h(0) + h(0) + h(0)| = |h(0) + (-h(0))| = 0$$

but

Autisymmetric

$$H(0) = h(0) + h(1) + h(2)$$

Problem 2 (Filter Design.)

20 Points

(a) (12 pts) A continuous-time filter is given by $H_a(s) = \frac{2}{2+s}$. We want to use this as a prototype filter to design a discrete-time filter via the bilinear transform with a suppression of $1/\sqrt{2}$ at $\omega_c = \pi/2$. (Note that the filter has a gain of 1 at frequency zero.) Give H(z) explicitly.

$$H_{\alpha}(s) = \frac{2}{2+s}$$
 $W_{c} = \frac{1}{2} \rightarrow z = 1$

$$H_{a}(z) = H_{a}(s) \Big|_{s = \frac{2}{T_{a}} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)} = \frac{2}{2 + \frac{2}{T_{a}} \left(\frac{1-z^{-1}}{1+z^{-1}}\right)}$$

$$H_{a}(z) = \frac{T_{a}(1+z^{-1})}{T_{a}(1+z^{-1}) + (1-z^{-1})} \rightarrow H_{a}(x) = \frac{1}{T_{a}(1-x)} + \frac{T_{a}(1-x)}{T_{a}(1-x) + (1+x)}$$

$$|H_{a}(\lambda)| = \frac{Td \sqrt{2}}{|T_{a}^{2}+1|} = \sqrt{2}$$

$$|T_{a}^{2}+1| \sqrt{2} = \sqrt{2}$$

(b) (8 pts) Sketch $|H(e^{j\omega})|$ for the filter designed in part (a) over the interval $0 \le \omega \le \pi$.

$$Ha(z) = \frac{zH1}{2z} \rightarrow H(eir) = \frac{ei^{\omega}+1}{2e^{i\omega}} \rightarrow |H(eir)| = \frac{|1+ei\omega|}{2}$$

(a) (5 pts) We want to approximate the lowpass filter in Figure 1 with the optimal minimax (Parks-McClellan) Type-I filter h(n). Just like in class, the band $0 \le \omega \le \omega_p$ is the desired passband, and the band $\omega_s \le \omega \le \pi$ is the desired stopband. In Figure 1, provide a sketch the form of $H(e^{j\omega})$ when h(n) has length 3. Recall that the amplitude of a Type-I filter has the form $A(e^{j\omega}) = \sum_{k=0}^{M/2} a_k \cos(k\omega)$.

Figure 1:

(b) (10 pts) Determine the filter h(n). Hint: If you find it easier, you may start by assuming that $\omega_p = \pi/3$ and thus, $\omega_s = 2\pi/3$.

 $h(0) = h(2) \quad h(1) = 0$ $P = \frac{1}{3} \quad \omega_{2} = \omega_{5} = \frac{2\pi i}{3}$ $\begin{pmatrix} 1 & \cos(0) - k \\ 1 & \cos(2\pi) & k \\ 1 & \cos(2\pi) & k \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -k \\ 1 & k \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $a_{0} + k = 1 \rightarrow 0$ $a_{0} = -8 \quad \text{werk of find } 8$ $a_{0} = -8 \quad \text{werk$

(c) (5 pts) What is the largest value of ω_p such that the maximum error is $\delta \leq 1/6$?

Wp = T

E(w)=W(w)[Ha(e+w)-Ae(e+w)]

25 Points

$$H_d(e^{j\omega}) = \left\{ \begin{array}{ll} 1, & |\omega| \leq \frac{\pi}{2} \\ 0, & \text{else} \end{array} \right. \qquad H_i(e^{j\omega}) = \left\{ \begin{array}{ll} 8, & |\omega| \leq \frac{\pi}{8} \\ 0, & \text{else} \end{array} \right.$$

$$H_i(e^{j\omega}) = \begin{cases} 8, & |\omega| \le \frac{\pi}{8} \\ 0, & \text{else} \end{cases}$$

The ZOH operates at interval T but produces pulses of width $\frac{T}{4}$, i.e.

$$g(t) = \left\{ \begin{array}{ll} 1, & 0 \leq t \leq \frac{T}{4} \\ 0, & \text{else,} \end{array} \right.$$

and the output is $z(t) = \sum_{n=-\infty}^{\infty} w[n]g(t - nT)$.

(a) (9 pts) For $X(e^{j\omega})$ pictured, sketch $W(e^{j\omega})$. Label the magnitude and bandwidth.

(b) (7 pts) For the same $X(e^{j\omega})$, sketch $|Z(j\Omega)|$ for $\Omega = [\frac{-8\pi}{T}, \frac{8\pi}{T}]$.

Zはこれいのはいのはいて

Z(jの)=売り(j(ハー型)) R

Should be complution of

(c) (7 pts) For this part, we are interested in making the dashed block (with input y[n] and output y(t) an ideal D/A converter for arbitrary y[n], i.e. ignore the effects of H_d .

What is the "cheapest" filter $H_a(j\Omega)$ such that between y[n] and y(t) we have an ideal D/A. Sketch $|H_a(j\Omega)|$ and specify its value where necessary.

(d) (2 pts) Explain (in words) the advantages and disadvantages of this D/A converter design over a direct implementation (as we have discussed it in class).

This D/A converter design is cheaper than the direct implementation but it is not as exact. (due to the need to arrive at a cheap solution)

The ZOH approximation will not produce the same results as higher-order holds on the sinc kernel reconstruction.

¹the filter having the largest transition band (as we have seen in class, the smaller (i.e., steeper) the transition band, the more filter coefficients are necessary)

Figure 2: A two-channel filter bank.

For the filter bank in Figure 2, find the conditions for perfect reconstruction, i.e., the conditions on the filters $F_i(z), G_i(z), H_i(z)$ (for i = 0, 1) such that y[n] = x[n].

$$H_1(z) \sim gain 1$$
 $Cotoff T/2$
 $G_1(z) \sim gain 2$
 $G_2(z) \sim gain 2$
 $G_3(z) \sim gain 2$
 $G_4(z) \sim gain 2$

Fi(z), Fo(z) must ensure that the two branches add up to y(m) i.e., each branch is yend (by symmetry)

$$\frac{\text{System}}{\text{y(n)} = \times \text{(n)}} \rightarrow \text{F(z)} = \frac{1}{2}$$

$$F_1(2) \sim gain /2$$
 $F_0(2) \sim gain /2$ cutoff T

Keep all frequencies, scale the input uniformly

9