Problem #1

- a. T
- b. F; Can't tell where error occured
- c. F; Not easier on hardware. It's a much stronger check
- d. F; ALOHA util. -> 0 under high load
- e. F; Reason is that updates propagate to neighbors, loops don't affect convergence
- f. T
- g. F
- h. T
- i. F, Nonsense! V.P. are used to decrease state in transit network
- j. F; It restricts the range, which was too great in the previous metric

Problem #2

No solution available

Problem #3

No solution available

Problem #4

Round 1

Node	TRT, microsec	THT, microsec	Synchronous Data Sent(KB)	Asynchronous Data Sent(KB)
A	600	655	0	8
В	1055	410	5	0
C	1365	164	2	0
D	1529	82	1	0

Each frame requires 8192 bits/10014 bps = 81.9 microsec

If time has not yet expired entire frame is sent

$$TRT_A = 200 + 200 + 100 + 0 + 100 = 600 \text{ microsec}$$

max frames A cans end = (1200-600)/81.9 = 8THT_A= 8*81.0 = 655 microsec

B : $TRT_B = 600 + 655 - 200 = 1055$ microsec

maxframes = (1200-1055)/81.9 = 2, but B has 5 synch. frames so $TRT_B = 5*81.9 = 410$ microsec; Likewise for C,D

Round 2

Node	TRT, microsec	THT, microsec	Synchronous Data Sent(KB)	Asynchronous Data Sent(KB)
A	1511	0	0	0
В	856	410	5	0
C	856	410	2	3
D	1102	164	1	1

Round 3

Node	TRT, microsec	THT, microsec	Synchronous Data Sent(KB)	Asynchronous Data Sent(KB)
A	1184	82	0	1
В	1266	410	5	0
C	1266	164	2	0
D	1020	164	1	1

Problem 5

d.) 3, update arrives at F in 3 rounds.

Problem 6

- b.) total time = 245.3 mS
- c.) WE will get an ACK back in dtrans and 2dprop sec. Therefore, it is useful for the window to be as big as (dtrans * 2dprop)/ dtrans = 148 frames.

Problem #4 2

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.