
EE 121 Midterm 1 Solutions
Mar, 19, 2003

Kiran

1. (a) Cov(X,Y ) = E[XY ] − EXEY = E[X(X + Z)] − 0 = EX2 + E[XZ] = σ2
X as X

and Z are uncorrelated, E[XZ] = 0.

(b)Yes. The covariance has the unit of power and hence depends on the unit of measure.

The correlation coefficient ρXY = Cov(X,Y )
σXσY

= σX√
σ2

Xσ2
Z

is independent of the unit of

measure.

(c) Following the derivation in (a), Cov(X, Y ) = σ2
X + ρXZσXσZ . If ρXZ is close to 1,

then X and Z “add” up resulting in a higher correlation between X and Y . If ρXZ is
small, then, X and Z are close to being independent and the correlation between X
and Y is only through X. If ρXZ is close to -1, X and Z “null” each other and the
correlation between X and Y decreases.

2. The estimation is an averaging function over elements whose lengths are proportional to
the length of the data window. Hence, larger the data window, higher the complexity of
estimation. However, as seen in the homework, the accuracy increases with increasing
N , approaching the autocorrelation function as N →∞.

3. (a) (i) Uniquely decodable : Reconstruction from coded sequence is unambiguous. For
all source symbols xi, x′i and n, n′ ∈ N, C(x1)C(x2) . . . C(xn) 6= C(x′1)C(x′2) . . . C(x′n′).

(ii) Prefix free : No codeword is a prefix to another codeword.

Prefix free ⇒ uniquely decodable — the parsing is determined once the codeword ends.
Uniquely decodable 6⇒ prefix free — a suffix free code is uniquely decodable.

(b) (i) 001000001 1 100000. Therefore, the runs of zeros are of length, 2,5,0,0,5+.

(ii) From class, concatenation of prefix-free codes is also prefix free.

(iii) This is a much more efficient scheme for small ε. It approaches H(Y ) faster and
does not waste space for storing long codewords. Also, this has a lower complexity of
encoding-decoding than the Huffman coding scheme.

(iv) P (Yn = k) = P (there are k zeros followed by a 1) = (1 − ε)kε = pk, which is a
geometric distribution. Clearly, Yn’s are identically distributed. Since they depend on
non-overlapping intervals of Xi, they are independent, thus constituting an iid process.

(v) The entropy of Y is H(Y ) = −∑∞
k=0 pk log pk and H(Y ) ≤ L̄ < H(Y ) + 1.

(vi) Let C(Yi) denote the encoded sequence of the run Yi and L(Yi) denote the length
of run Yi (inclusive of the 1’s — a run of k zeros will count for a length of k + 1). If
we have M such runs, then, the compression ratio is given by,

η =

∑M
m=1 L(C(Yi))∑M

m=1 L(Yi)
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Figure 1: Covariance function for X(t).

As M →∞, 1
M

∑M
m=1 L(Yi) → EY +1 (Law of Large Numbers), where, Y is a geometric

(1 − ε) random variable and from (c), 1
M

∑M
m=1 L(C(Yi)) → L̄, the average length of

compressed data. Therefore, the compression ratio η = εL̄.

4. (a) RX(τ) = 2W sinc(2Wτ). This is plotted in Figure 1 for W = 2.

(b) The process is sampled at Nyquist rate. RY [k] = RX(2WkT ) = 2Wδ[k]. Hence,
SY (ω) = 2W . Please verify this by drawing a picture in frequency domain also. The
sampled process is a discrete white process.

(c) A representative figure is shown in Figure 2. As T →∞, there are T portions each
of height 2W

T
overlapping, thus making the overall added portion approximately flat,

of height 2W . Therefore, the sampled process becomes white as T →∞.

(d) The actual shape of SX(f) (assumed to be bounded) will affect the minor fluctu-
ations within the flat region and how fast it becomes flat. It does not change the fact
that the under-sampled process becomes white as T →∞.

5. I (a) This is shown in Figure 3 and the projection is
〈

u
‖u‖ ,v

〉
u
‖u‖ .

(b) Every vector in S can be written as a linear combination of u1 and u2. Therefore,
if we denote a1u1 + a2u2 as the projection of v onto S, the vector, v − (a1u1 + a2u2)
is orthogonal to u1 and u2. Solving, we have that the projection of v onto S is,
<v,u1>
<u1,u1>

u1 + <v,u2>
<u2,u2>

u2.
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Figure 2: Effect of sampling below Nyquist rate
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Figure 3: Projections and vector spaces

(c) define a new vector u′2 = u2 − <u1,u2>
u1,u1>

u1. Now, u1 and
u′2
‖u′2‖ form an orthonormal

basis for S and we can use results in (b).

(d) The projection on S depends only on the “angle” between v and S and hence
independent of the basis chosen.

II (a) A signal x(t) band-limited to (−W,W ] can be reconstructed from its samples at
t = nT , iff T ≥ 1

2W
. For T = 1

2W
, the reconstruction is x(t) =

∑∞
n=−∞ x(nT )sinc(2W (t−

nT )).

(b) From (a), all band-limited functions can be written as linear combination of
{√2W sinc(2W (t−nT ))}∞n=−∞. Since these are orthonormal, they form an orthonormal
basis. The dimension of this vector space is infinite.

(c) Here, y(t) is not necessarily bandlimited. Let yb(t) denote y(t) passed through a
(−W,W ] low-pass filter. Then, the projection of y(t) onto V is yb(t). To prove this,
consider the projection of y(t) onto one of the orthonormal basis,

< y,
√

2W sinc(2W (t− nT )) > =
√

2W

∫
y(t)sinc(2W (t− nT )) dt

=
√

2W

∫
Y (f)Rect(−W,W ]e−j2πnfT df

=
√

2W

∫
Yb(f)e−j2πnfT df

=
√

2W

∫
yb(t)δ(t− nT ) dt =

√
2Wyb(nT )
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Therefore, the projection of y(t) onto V is
∑

yb[nT ]sinc(2W (t − nT )) which is yb(t)
from sampling theorem.

(d) The noise out of band does not affect the signal subspace. Since the noise is White
Gaussian, the projection of z(t) on a basis out of (−W,W ] is independent of the noise
within (−W,W ] and hence provides no information about noise within (−W,W ] band
— the out-of-band noise is on an orthogonal subspace. Therefore, the projection of
noise on V is a sufficient statistic for detecting the transmitted message.

(e) In the first approach, we can use infinitely many matched filters, matched to each
one of the orthonormal basis, as shown in Figure 4(a). However, each of matched
filters are shifted versions of

√
2W sinc(2Wt). Therefore, from the results in class,

we can obtain the sufficient statistics by using this filter and sampling the output
at {t = nT}n=∞

n=−∞, shown in Figure 4(b). (can you point out which sample here
corresponds to the output of the matched filters above?)

Alternatively, from part (d), we have that all the relevant information is present within
the band of interest, (−W,W ]. Hence, we can filter the received signal with a low-pass
filter of bandwidth (−W,W ] and extract all the relevant signal and noise information.
Since this is bandlimited, sampling the filtered waveform at {t = nT}∞n=−∞ provides all
information for reconstruction of the original signal and therefore provides the sufficient
statistics for detection. This is shown in Figure 4(c) (Can you argue/prove that figures
(b) and (c) are the same?)
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Figure 4: Problem 6
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