Problem #1

1.
\[E_0(f) = |H(f)|^2 * S_{ww}(f) = N_0 A^2 / 2 * \pi f / 2w \]
\[v(t) = u(t) \sin(2 \pi f_0 t) \]
\[R_u(t + \tau, t) = E[v(t + \tau) \cdot v(t)] \]
\[= E[u(t + \tau) \cdot u(t) \sin(2 \pi f_0 (t + \tau)) \sin(2 \pi f_0 t)] \]
\[= 0.5 E[u(t + \tau) \cdot u(t) \cos(2 \pi f_0 \tau) - \cos(4 \pi f_0 t + 2 \pi f_0 \tau)] \]
\[= 0.5 R_u(\tau) \cos(2 \pi f_0 \tau) - 0.5 R_u(\tau) \cos(4 \pi f_0 t + 2 \pi f_0 \tau) \]
\[\frac{1}{T_0} \int_{t'}^{t+T_0} R_u(t + \tau, t) d\tau = R_u(\tau) \cos(2\pi * f_0 * \tau) \]
\[S_v(f) = S_u(f) * [0.5 \delta(f - f_0) + 0.5 \delta(f + f_0)] \]
\[= 0.5 S_u(f - f_0) + 0.5 S_u(f + f_0) \]
\[= N_0 A^2 / 8 * \pi(f - f_0) / 2w + N_0 A^2 / 8 * \pi(f + f_0) / 2w \]
\[S_w(f) = |H(f)|^2 * S_v(f) \]
\[= N_0 A^2 / 8 * \pi(f / 2w) * \pi(f - f_0) / 2w + N_0 A^2 / 8 * \pi(f / 2w) * \pi(f + f_0) / 2w \]

Problem #2

2.
\[V(f) = M(f) * [1/2j * \delta(f - f_1) - 1/2j * \delta(f + f_1)] \]
\[= 1/2j * M(f - f_1) - 1/2j * M(f + f_1) \]

Since \(f_1 \gg W \) the Fourier Transform of the corresponding analytic signal is
\[Z(f) = 1/j * M(f - f_1) \]
\[z(t) = 1/j * m(t) e^{j*2\pi f_1 t} \]
\[u_d(t) = 1/j * m(t) e^{j*2\pi(f_1 - f_0)t} \]
\[= m(t) \sin(2\pi(f_1 - f_0)t) - jm(t)\cos(2\pi(f_1 - f_0)t) \]

Hence
\[u_d(t) = m(t) \sin(2\pi(f_1 - f_0)t) \]
\[u_s(t) = -m(t) \cos(2\pi(f_1 - f_0)t) \]

Note: It is irrelevant whether \(f_0 \gg W \) or that \(|f_1 - f_0| \) is small relative to \(f_1 \) and \(f_0 \)
Problem #3

3.

\[S(t) \text{ is even, so} \]

\[s(t) = s_0/2 + \sum_{n=1}^{\infty} s_n \cos(2\pi n f_c t) \]

for some \(s_0, s_1, s_2 \ldots \)

\[u(t) = m(t) s(t) = s_0/2 * m(t) + \sum_{n=1}^{\infty} s_n m(t) \cos(2\pi n f_c t) \]

\[v(t) = s_1 m(t) \cos(2\pi f_c t) \text{ because } f_c >> W \]

\(n(t) \) is bandpass noise with flat power spectral density \(N_0/2 \) over the bands \(\pm f_c \pm W \)

\[r(t) = s_1 m(t) \cos(2\pi f_c t) + n_c(t) \cos(2\pi f_c t) - n_s(t) \sin(2\pi f_c t) \]

\[r(t) \cos(2\pi f_c t) \text{ after low pass filtering yields } 1/2\left[s_1 m(t) + n_c(t) \right] \]

The message signal power at the output is

\[P_0 = 1/4 * s_1^2 * P_M \]

The noise power at the output is

\[P_n = 1/4 * P_{nc} = 1/4 * N_0/2 * 4W = N_0W/2 \]

\((S/N)_0 = P_0/P_n = s_1^2 P_M/2WN_0 \)

Here \(s_1 = 2T_c \left[\int_{-T_c/4}^{T_c/4} A_0 \cos(2\pi f_c t) dt \right. \]

\[- \int_{-T_c/2}^{T_c/2} A_0 \cos(2\pi f_c t) dt \]

\[- \int_{-T_c/4}^{T_c/4} A_0 \cos(2\pi f_c t) dt \]

\[= 4/\pi^2 A_0 \]

The desired power is

\[P_R = \sum_{n=1}^{\infty} s_n^2 P_M \text{ because } f_c >> W \text{ and because } s_0 = 0 \]

By Parseval's relation, since \(s_0 = 0 \)

\[\sum_{n=1}^{\infty} s_n^2 = A_0^2 \]

Thus

\[P_R = A_0^2 * P_M \]

Hence \((S/N)_0 = (16/\pi^2) * (A_0^2 * P_M/2WN_0) = 8/\pi^2 * P_R/WN_0 \)

\[= 8/\pi^2 * (S/N)_b \]

Problem #4
4. Let $x_1 < x_2$ be the quantization levels chose. Let us write $u = (x_1 + x_2)/2$ and

\[x_1 = u - \nu \]
\[x_2 = u + \nu \]

Given u, the choice of ν is decide by

(A) $\int_{-\infty}^{\mu} x \phi(x) dx = (u - \nu) \int_{-\infty}^{\mu} \phi(x) dx$

(B) $\int_{-\infty}^{\mu} x \phi(x) dx = (u + \nu) \int_{-\infty}^{\mu} \phi(x) dx$

where $\rho(\nu)$ derives the Gaussian density

$$\frac{1}{(\sqrt{2\pi}\sigma)} e^{-\nu^2/2\sigma^2}$$

The mean square distribution is

\[\int_{-\infty}^{\mu} (x - (u - \nu))^2 \phi(x) dx + \int_{-\infty}^{\mu} (x - (u + \nu))^2 \phi(x) dx \]

\[= \int_{-\infty}^{\mu} x^2 \phi(x) dx - (u - \nu)^2 \int_{-\infty}^{\mu} \phi(x) dx + \int_{-\infty}^{\mu} x^2 \phi(x) dx - (u + \nu)^2 \int_{-\infty}^{\mu} \phi(x) dx \]

where we used (A) and (B)

using (A) and (B) again, this can be written as

\[= \sigma^2 - ((\int_{-\infty}^{\mu} x \phi(x) dx)^2 + (\int_{-\infty}^{\mu} \phi(x) dx)^2) \]

so we want to choose u to maximize

\[(\int_{-\infty}^{\mu} x \phi(x) dx)^2 + (\int_{-\infty}^{\mu} \phi(x) dx)^2 \]

clearly the best choice is $u = 0$

Then ν would be chosen so that $u - \nu = x_1$ is the centroid of the left half
and $u + \nu = x_2$ is the centroid of the right half of the density

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.