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PRINT your student ID:
PRINT AND SIGN your name:

,
(last) (first) (signature)

PRINT your Unix account login: ee121-

Prob. 1
Prob. 2
Prob. 3
Total

You may consult your one handwritten note sheet. (You must turn it in with your exam.) Phones, calcu-
lators, tablets, and computers are not permitted. No collaboration is allowed at all and you are not allowed
to look at another’s work.

Please write your answers in the spaces provided in the test; in particular, we will not grade anything on
another exam page unless we are clearly told in the problem space to look there.

You have 80 minutes. There are 3 questions, of varying numbers of points. The questions and their parts are
of varying difficulty, so avoid spending too long on any one part.

50 Points is a good score. This is basically a two hour exam but you only have one hour and twenty minutes.

Do not turn this page until your instructor tells you to do so.
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Problem 1. [True or false] (10 points)

Circle TRUE or FALSE.

Prove statements that you think are true and disprove (e.g. by showing a counterexample) statements
that you think are false.

(a) TRUE or FALSE: Consider an iid sequence of Bernoulli-p random variables Xi for p < 1
2 . Suppose that

we define the Typical Set T n
ε = {~x ∈ {0,1}n|2−n(H(p)+ε) ≤ P(~X =~x) ≤ 2−n(H(p)−ε)} for ε > 0. Here

H(p) = p log2
1
p +(1− p) log2

1
1−p .

Then the set T n
ε contains the most likely binary sequence — i.e. the n-length sequence~x that maximizes

P(~X =~x).
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Problem 2. Not quite orthogonal signaling (40 points)

Consider a continuous-time channel over the time-interval [0,1] with AWGN N(t) with intensity 1. (e.g.∫ 1
0 N(t)dt is a standard Gaussian random variable with mean 0 and variance 1.)

The signaling being used is a kind of pulse-position modulation where the potential pulses sometimes over-
lap with each other. There are 2k possible pulses for messages corresponding to i = 0,1, . . . ,2k−1.

xi(t) =


0 if t < i

2k+1√
P 2k+1

2 if i
2k+1 ≤ t ≤ i+2

2k+1
0 if t > i+2

2k+1

The decoding strategy will be the same general correllate and then threshold strategy. So Ỹi =
∫ 1

0 Y (t) xi(t)√
P

dt
will be calculated and then compared against a threshold T to see which one passes.

a. (4 points) Sketch what these waveforms look like for some generic i, i+1, and i+2.

b. (5 points) Show that ‖xi‖2 = P.
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c. (6 points) Calculate 〈xi,x j〉. Are they all orthogonal to each other?

d. (20 points) Choose a (good) formula for a threshold T and argue why the probability of the true Ỹm > T should
approach 1 as k increases while the probability that all false Ỹf < T should approach 1 as k increases.

(HINT: Now there are two kinds of false codewords — those that are not orthogonal to the true
codeword and those that are. Deal with them separately.)

(Second HINT: Feel free to guess at the threshold and move on to the next part. Come back to finish
this later.)

EECS 121, Fall 2013, MT 1 4



PRINT your name and student ID:

[Extra Page]
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e. (5 points) What is the energy per bit required in your scheme from part (c) for successful decoding? Comment.
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Problem 3. Random Affine Codes with a twist (35 points)

In this problem, you are asked to consider a different approach to coming up with random affine codes.

We are going to be working in a finite field Fn of size 2n. This means that there is an addition, additive
inverses, multiplication, and multiplicative inverses, etc. For this problem, feel free to assume that all the
properties you learned in 70 about finite fields of prime sizes continue to apply to this field Fn so you can
also invoke polynomial properties including properties of roots, degrees, interpolation, etc. as you would
like.

Furthermore, assume there is an invertible mapping g(~x) that maps a n-bit binary string ~x into an element
of this field and g−1 does the reverse.

The messages ~d are k-bits long and can be interpreted as n-bit binary strings by simply putting zeros in front.
So assume that you can apply g to messages ~d as well.

(HINT: It might help to just ignore g throughout the problem and just believe that multiplication of these
vectors is a magical operation that obeys finite field rules.)

Consider a randomized coding strategy that works as follows:

1. Two elements of the finite field Fn are drawn iid uniformly at random. Call these A and B. This is
done at design time so that both the encoder and decoder know A and B.

2. n-bit codewords are generated for k-bit messages ~d using~x(~d) = g−1(A∗g(~d)+B) where the ∗ rep-
resents multiplication in Fn and the + represents addition in Fn.

a. (5 points) Show that the codeword corresponding to a message ~d is drawn uniformly at random from all 2n

possible codewords.
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b. (10 points) Show that the codewords corresponding to different mesages are pairwise independent.

(HINT: Feel free to skip this part and come back to it later. You won’t need this part for the next parts.)
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c. (5 points) From parts (a) and (b), you can see that all the properties we required in the in-class random-coding
analysis are satisfied and these random codes will work as well as those discussed in lecture. How
many bits does it take to represent a particular code? (i.e. specify the A and B)

d. (5 points) Further suppose that the mapping g has the following properties: g(~0) = 0, g(~v+~w) = g(~v)+ g(~w)
for all~v and ~w. (i.e. It’s as though the addition operation in Fn operates bitwise.)

Argue why in this case, for use over a binary symmetric channel, it suffices to just use linear
codes g−1(A ∗ g(~d)). (A binary symmetric channel is the channel discussed in class that looks like
additive iid Bernoulli-p noise in the binary field.)
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e. (10 points) Keeping the assumptions of part (d) above, are the resulting codes linear codes when viewed over
binary vectors? (i.e. For every A does there exist a matrix G so that g−1(A∗g(~d)) = G~d for all ~d?)

(HINT: Can you interpret the columns of G? Then check that interpretation. . . )
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