Problem \#1 (30 pts)

A band-limited signal $x(t)$ whose spectrum is specified in Figure 1 is fed into the system described on Figure 2. Note that

Figure 1: Problem 1: $X(w)$

Figure 2; Problem 1: System diagram.

$$
\begin{gathered}
w_{0}=2 B \quad T=\frac{\pi}{B} \\
y(t)=x(t) \cos \left(w_{0} t\right) \\
z(t)=y(t) s(t)
\end{gathered}
$$

where $\mathrm{s}(\mathrm{t})$ is infinite pulse train with period T , height 1 , and 50% duty cycle.
a) (6 pts)

Find $\mathrm{Y}(w)$. Sketch $\mathrm{Y}(w)$ and indicate all salient features (heights of the peaks and intersections of $\mathrm{Y}(w)$ with w-axis).
b) ($\mathbf{8} \mathbf{p t s}$)

Find $\mathrm{S}(w)$. Sketch $\mathrm{S}(w)$ in the range $-4 \mathrm{~B}<w<4 \mathrm{~B}$, and indicate all salient features (heights of the peaks and intersections of $\mathrm{S}(w)$ with w-axis).
c) ($\mathbf{1 0} \mathbf{~ p t s}$)

Sketch $\mathrm{Z}(w)$ in the range $-3 \mathrm{~B}<w<3 \mathrm{~B}$, and indicate all salient features (heights of the peaks and intersections of $\mathrm{Z}(w)$ with w-axis).
d) (6 pts)

Find $\mathrm{H}(w)$ such that $\mathrm{x}^{\prime}(\mathrm{t})=\mathrm{x}(\mathrm{t})$.

Problem \#2 (35 pts)

Let $f(\mathrm{t})$ be a periodic function with period 2^{*} pi, shown of Figure 3 and specified by

Figure 3: Problem 2: $f(t)$

$$
f(t)=t^{2} \quad-\pi<t<\pi
$$

The Fourier Series expansion of $f(t)$ is given by

$$
f(t)=\frac{\pi^{2}}{3}-4\left(\frac{\cos (t)}{1^{2}}-\frac{\cos (2 t)}{2^{2}}+\frac{\cos (3 t)}{3^{2}} \ldots\right)
$$

Now consider (non periodic) function $g(t)$, shown on Figure 4 and specified by

$$
g(t)= \begin{cases}\left(\frac{t}{2 \pi}\right)^{2} & -2 \pi<t<2 \pi \\ 0 & \text { otherwise }\end{cases}
$$

Figure 4: Problem 2: $g(t)$
a) ($\mathbf{1 5} \mathrm{pts}$)

Find $\mathrm{X}(w)$ and $\mathrm{Y}(w)$ such that $\mathrm{G}(w)$ equals to convolution of $\mathrm{X}(w)$ and $\mathrm{Y}(w)$, i.e. $\mathrm{G}(w)=\mathrm{X}(w) * \mathrm{Y}(w)$
b) (20 pts)

If $\mathrm{G}(w)$ is expressed as
$G(\omega)=\sin (2 \pi \omega) \sum_{k=0}^{\infty} a(\omega, k)$
find function $a(w, k)$.

Problem \#3. (35 pts)
NOTE: In this problem, a black circle at position ($\mathrm{x} 0, \mathrm{y} 0$) signifies $\operatorname{delta}(\mathrm{x}-\mathrm{x} 0) \mathrm{delta}(\mathrm{y}-\mathrm{y} 0)$.
a) $(7 \mathrm{pts})$

Find the 2D Fourier Transfore of function

$$
f_{1}(x, y)=\sum_{k=-\infty}^{\infty} \delta(x-k) \delta(y)
$$

also drawn in Figure 5.
Sketch $F_{1}\left(w_{x}, w_{y}\right)$.

Figure 5: Problem 3: $f_{1}(t)$
b) (8 pts)

Find the 2D Fourier Transform of function

$$
f_{2}(x, y)=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x-2 k) \delta(y-l)
$$

also drawn in figure 6 .

Sketch $F_{2}\left(w_{x}, w_{\nu}\right)$.

Figure 6: Problem 3: $f_{2}(t)$
c) $(10 \mathrm{pts})$

Find the 2D Fourier Transform of function

$$
f_{3}(x, y)=\sum_{k+l \text { is even }} \delta(x-k) \delta(y-l)
$$

also drawn in figure 7.

$$
\text { Sketch } F_{3}\left(w_{x}, w_{v}\right)
$$

Figure 7: Problem 3: $f_{3}(t)$
d) ($\mathbf{1 0} \mathbf{p t s}$)

Find the 2D Fourier Transform of function $f 4(\mathrm{x}, \mathrm{y})$ also drawn in figure 8 . Note that $f 4(\mathrm{x}, \mathrm{y})$ is equal to 1 in shaded areas, and to 0 otherwise.

Figure 8: Problem 3: $f_{4}(t)$

