EECS 120, Spring/1999 Midterm \#1

For your answers, you only need to express the results in rational form, i.e. $\tan { }^{\wedge}-1(), \sin (), \operatorname{sqrt}(\mathrm{e})$, $\mathrm{pi} / 7$, etc. There is no need to evaluate numerical values.

Problem 1 (9 points, 3 each)

Are these functions periodic? If so, what is the period?
a. $\sin t+\sin 2 t$
b. $\sin 5 t+\cos (7 t+\mathrm{pi} / 4)$
c. $\sin 5 t+\cos 7(p i) t$

Problem 2 (15 points, 3 each)

Determine whether each is a power signal, energy signal or neither. Also calculate the power or energy for each.
a. $\sin (t) * \cos (t)$
b. summation(from $\mathrm{n}=-$ infinity to +infinity) $[\mathrm{PI}((\mathrm{t}-3 * \mathrm{n}) / 4)]$
c. summation(from $n=-$ infinity to + infinity $)[\operatorname{Sigma}(\mathrm{t}-\mathrm{n}) * \sin (\mathrm{pi} * \mathrm{t})]$
d. square root $[\operatorname{Sigma}(\mathrm{t}-1 / 4) * \cos (\mathrm{pi} * \mathrm{t})$]
e. $\operatorname{PI}(\mathrm{t}) * \operatorname{PI}(\mathrm{t} / 2)$

Problem 3 (10 points)

$\mathrm{y}(\mathrm{t})=\mathrm{e}^{\wedge}-\mathrm{t} * \mathrm{u}(\mathrm{t}) *$ summation (from $\mathrm{n}=0$ to infinity) [Sigma ($\left.\mathrm{t}-\mathrm{n}\right)$]
Find the value of $y(0), y(1), y(2)$, and $y($ infinity $)$.

Problem 4 (13 points, 3/6/4)

$\mathrm{x}(\mathrm{t})=\sin ^{\wedge} 2(\mathrm{t})--->\mathrm{h} 1(\mathrm{t})=\mathrm{e}^{\wedge}-\mathrm{t} * \mathrm{u}(\mathrm{t})--->\mathrm{y}(\mathrm{t})$
a. Find the Fourier series (complex exponentials) expansion of $x(t)$.
b. Find hte Fourier series expansion of $y(t)$.
c. Sketch the 2 -sided amplitude and phase spectrum of $x(t)$ and $y(t)$. Label salient features.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams you can call the ghostbusters at examfile@hkn.eecs.berkeley.edu.

