EECS 120 Midterm 2 Wed. April 9, 2014 1610 - 1730 pm

Name:______ SID:_____

- Closed book. One 8.5x11 inch page two sides formula sheet (or two single sided). No calculators.
- There are 4 problems worth 100 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	24	
2	28	
3	22	
4	26	
TOTAL	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan^{-1} 0.1 = 5.7^{\circ}$	$\tan^{-1} 0.2 = 11.3^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt[6]{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$
$\cos 45^\circ = \frac{\sqrt{2}}{2}$	$\sin 45^{\circ} = \frac{\sqrt{2}}{2}$

$20\log_{10}1 = 0dB$	$20\log_{10}2 = 6dB$	
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	
$1/e \approx 0.37$	$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$
$1/e^3 \approx 0.05$	$\sqrt{10} \approx 3.16$	$\sqrt{3} \approx 1.73$

Problem 1. Superheterodyne receiver (24 pts)

Two signals $x_1(t)$ and $x_2(t)$ have spectra (Fourier Transforms) $X_1(j\omega)$ and $X_2(j\omega)$ respectively, as shown in the figure below. You are given a signal y(t) with spectrum $Y(j\omega)$, which contains 2 received signals, $x_1(t)\cos(\omega_1 t)$ (from station 1) and $x_2(t)\cos(\omega_2 t)$ (from station 2). A narrow bandpass filter $H_{IF}(j\omega)$ with fixed center frequency $\omega_{IF} < \omega_1$ is used to filter out interference.

The block diagram below, when completed, should recover the original $x_2(t)$ from y(t).

[7 pts] a. Add signal processing elements as necessary in *block1* such that the output $Z(j\omega)$ will have $X_2(j\omega)$ in the passband of the bandpass filter. For each element, specify amplitudes and frequencies as necessary.

[10 pts] b. For your block1 system, sketch the spectra $Z(j\omega)$, labelling key frequencies and amplitudes.

[7 pts] c. Add signal processing elements as necessary in *block2* such that the output of *block2* is $x_2(t)$. For each element, specify amplitudes and frequencies as necessary.

Problem 2. Sampling and Discrete Fourier Transform (28 pts)

For parts a) and b), consider the system below, where $x(t) = \cos(6\pi t)$. Parts a) and b) may have different $w(t), T_s, T_o$ and should be answered independently. Sketch should label peak magnitude, and frequency of zero crossing(s) should match given scale.

Note $\Pi(t) = u(t+0.5) - u(t-0.5).$

Problem 2. cont.

 -24π

 -18π

 -12π

 -6π

0

6π

12π

18π

24π

ω

Problem 2. cont.

[7 pts] c. Given $x_3[n] = \cos(\pi n/4)$, sketch $X_3[k]$, the 16 point DFT of $x_3[n]$, labelling amplitudes.

[7 pts] d. Given $x_4[n] = x_3[n] = \cos(\pi n/4)$ for n even, and $x_4[n] = 0$ for n odd, sketch $X_4[k]$, the 16 point DFT of $x_4[n]$, labelling amplitudes.

Problem 3. Laplace Transform (22 points)

A causal system with input x(t) and output y(t) is described by the differential equation:

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = x(t).$$

[11 pts] a. Find Y(s) and y(t) for x(t) = 0 (ZIR). $y(0^{-}) = 1$, $\frac{d}{dt}y(0^{-}) = 2$.

$$Y(s) = \underline{\qquad \qquad } \qquad \qquad y(t) = \underline{\qquad \qquad }$$

[11 pts] b. Find Y(s) and y(t) for x(t) = u(t) (ZSR). $y(0^{-}) = 0$, $\frac{d}{dt}y(0^{-}) = 0$.

 $Y(s) = _$

$$y(t) =$$

Problem 4. Feedback System (26 points)

[4 pts] a. Find the transfer function for the system above which has input x(t) and output y(t).

$$H(s) = \frac{Y(s)}{X(s)} = \underline{\qquad}$$

[6 pts] b. Find the frequency ω_o at which the phase of G(s) is -180° .

 $\omega_o =$ _____

[6 pts] c. For the frequency ω_o found above, what is the maximum K which could be used before the closed-loop system is unstable (this is the gain margin).

K < _____

[6 pts] d. Find the sinusoidal steady state response of the closed-loop system with K = 4 to the input $x(t) = \cos(t)u(t)$, ignoring any transients. (Hint: phasors).

y(t) =_____

[4 pts] e. Without explicitly calculating, discuss the steady-state closed-loop response of the system to $x(t) = \cos(\omega_o t)u(t)$ using ω_o from part b and the K value from part c.