EECS 120 Midterm 1 Wed. Feb. 26, 2014 1610 - 1730 pm

Name:		
SID:		

- Closed book. One 8.5x11 inch page one side formula sheet. No calculators.
- There are 4 problems worth 100 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	21	
2	27	
3	25	
4	27	
TOTAL	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$
$\cos 45^\circ = \frac{\sqrt{2}}{2}$	$\sin 45^\circ = \frac{\sqrt{2}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10}2 = 6dB$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$
$1/e \approx 0.37$	$1/e^2 \approx 0.14$
$1/e^3 \approx 0.05$	$\sqrt{10} \approx 3.16$

Problem 1 LTI Properties (21 pts)

[15 pts] Classify the following systems, with input x(t) and output y(t). In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect).

System	Causal	Linear	Time-invariant
a. $y(t) = x(t)\cos(2\pi t)$			
b. $y(t) = x(t) * u(t-2)$			
c. $y(t) = 3x(t+1) + 1$			
d. $y(t) = \int_{-\infty}^{\infty} x(\tau) x(t-\tau) d\tau$			
e. $y(t) = x(t) - \frac{1}{2} \frac{dy(t)}{dt}$			

[6 pts] Two of the systems above (a,b,c,d,e) are not BIBO stable. Note below which systems are not BIBO stable, and then find a bounded input x(t) which gives rise to an unbounded output y(t) for each of these systems.

System 1:

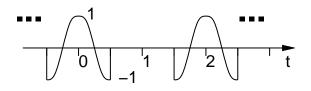
Bounded input x(t) = _____

System 2:

Bounded input x(t) =_____

Problem 2 Fourier Series (27 pts)

You are given a periodic function x(t) as shown, where the shape is one period of a cosine:



x(t) can be represented by a Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} x_k e^{jk\omega_o t}$$

[2 pts] a. What is the fundamental frequency $\omega_o =$ _____

[8 pts] b. Find $x_k =$ _____

Problem 2, continued.

A periodic signal c(t) with period $T_o = 2$ seconds has complex Fourier series coefficients c_k where:

$$c_k = \frac{1}{2} \left[\frac{\sin \frac{(1-k)\pi}{2}}{\pi(1-k)} + \frac{\sin \frac{(1+k)\pi}{2}}{\pi(1+k)} \right]$$

[2 pts] c. What is the time average DC power in c(t)?

[3 pts] d. What is the time average power in the fundamental frequency component ω_o ?

The signal c(t) is passed through a filter with frequency response $H(j\omega)$, with:

$$H(j\omega) = 1 - e^{-j\omega},$$

and the output of the filter is d(t), where $d(t) = \sum_{k=-\infty}^{\infty} d_k e^{jk\pi t}$.

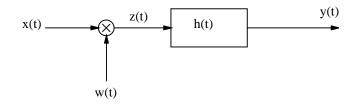
[8 pts] e. Find d_k (leave as an expression) = _____

[4 pts] f. Complete the table for specific frequency components, simplifying if possible:

k	d(k) '
0	
1	
2	
3	

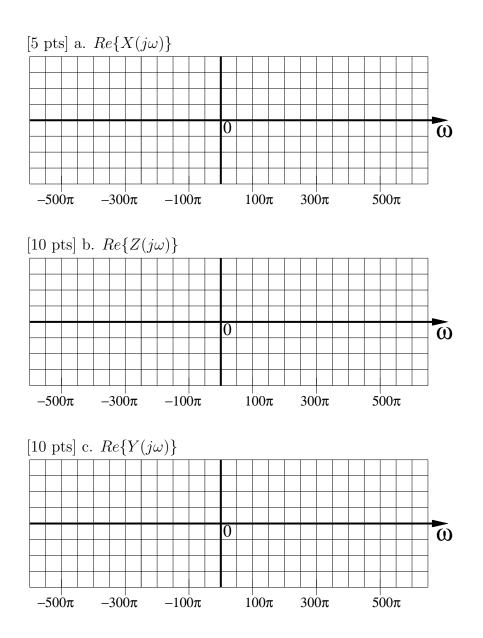
Problem 3. Fourier Transform (25 pts)

For each part below, consider the following system:



Where $x(t) = \cos(400\pi t) + \frac{\sin 100\pi t}{\pi t}$, $w(t) = \frac{\sin 50\pi t}{\pi t}$, $h(t) = \frac{\sin 100\pi t}{\pi t}$

Sketch $ReX(j\omega), ReZ(j\omega), ReY(j\omega)$ labelling height/area, center frequencies, and key zero crossings for $-500\pi \le \omega \le 500\pi$:



Problem 4. DTFT (27 points)

A causal LTI system with input x[n] and output y[n] is described by the difference equation:

$$y[n] - y[n-1] = x[n]$$

[4 pts] a. Find $H(e^{j\omega})$ the transfer function for the system = _____

[2 pts] b. Find the impulse response h[n], that is, the time response of the system to input $x[n] = \delta[n]$.

h[n] =_____

[10 pts] c. If $x[n] = 2\cos(\frac{1}{2}\pi n)$ find y[n]. y[n] = _____

[4 pts] d. Show that y[n] is real in part c (above).

Problem 4, continued.

[4 pts] e. An LTI system has transfer function $K(e^{j\omega}) = \frac{L(e^{j\omega})}{M(e^{j\omega})} = 2\cos(\omega) + 2j\sin(2\omega)$. Write the difference equation for this system with input m[n] and output l[n]:

 $l[n] = _$ _____

[3 pts] f. A signal x[n] has DTFT $X(e^{j\omega})$. Another signal y[n] = x[-2n+4]. Find the DTFT of y[n] in terms of $X(e^{j\omega})$.

 $Y(e^{j\omega}) = _$