EECS 120 Final Exam Fri. May 16, 2014 0810 - 1100 am

Name:_____ SID:_____

- Closed book. Three single sided 8.5x11 inch pages of formula sheet. No calculators.
- There are 8 problems worth 200 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	24	
2	29	
3	14	
4	29	
5	24	
6	34	
7	24	
8	22	
TOTAL	200	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan^{-1} 0.1 = 5.7^{\circ}$	$\tan^{-1} 0.2 = 11.3^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt[6]{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$
$\cos 45^\circ = \frac{\sqrt{2}}{2}$	$\sin 45^\circ = \frac{\sqrt{2}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10}2 = 6dB$	
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	
$1/e \approx 0.37$	$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$
$1/e^3 \approx 0.05$	$\sqrt{10} \approx 3.16$	$\sqrt{3} \approx 1.73$

Problem 1 LTI Properties (24 pts)

[24 pts] Classify the following systems, with input x(t) (or x[n]) and output y(t) (or y[n]). In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect).

System	Causal	Linear	Time-invariant	BIBO stable
a. $y(t) = x(t) * \sum_{n=0}^{\infty} \delta(t - 4n)$				
b. $y(t) = x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-4n)$				
c. $y[n] = x[n] * 0.9^n u[n]$				
d. $y[n] = \sum_{m=0}^{\infty} x[m] 0.9^m$				
d. $y(t) = x(t) * [\delta(t+1) + e^{-2t}u(t)]$				
e. $y(t) = x(t) * \left[\frac{d}{dt}\delta(t-1) + e^{-2t}u(t)\right]$				

Problem 2 Short Answers (29 pts)

Answer each part independently. Note $\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}).$

[3 pts] a. Evaluate $\delta(t + \frac{1}{4}) * \cos(2\pi t)u(t) =$

[4 pts] b. Sketch $\Pi(t-1) * \Pi(2t)$

[4 pts] c. Given an LTI system with input $x(t) = \Pi(t - 4.5)$ and output $y(t) = \Pi(2t) - \Pi(2(t - 1))$, find the impulse response of the system, h(t) =_____. (Hint: sketch x(t) and (y(t))

[4 pts] d. Given $x(t) = \sum_{n=-\infty}^{\infty} [\delta(t-2n) + \frac{1}{2}\delta(t-2n+1)]$, find $X(j\omega)$ the Fourier Transform of x(t). $X(j\omega) = _$ _____ [4 pts] e. What is the energy in the time signal $\frac{\sin(100\pi t)}{t}$?

[6 pts] f. A system with input x(t) and output y(t) is described by the following differential equation: $\frac{d^2}{dt^2}y + 2\frac{d}{dt}y + y = \frac{d}{dt}x + 2x.$ Assuming zero initial conditions, find the impulse response for this system.

h(t) =_____

[4 pts] g. Given the bilateral Laplace transform $X(s) = \frac{1}{s-2}$ and the region of convergence is to the left of the pole at s = 2, find the inverse Laplace transform,

x(t) =_____

Problem 3 Laplace Transform (14 pts)

[14 pts] An LTI system has input x(t), output y(t) and transfer function

$$H(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

For input $x(t) = (1 + \cos \omega_n t)u(t)$, find the steady-state solution y(t) for large t.

y(t) =_____

Problem 4. Z transform (29 pts)

[10 pts] a. Consider an LTI causal system with impulse response $h[n] = (2 - (\frac{1}{2})^n)u[n]$. Find g[n] such that $h[n] * g[n] = \delta[n]$.

g[n] =_____

[3 pts] b. Show by direct calculation that the g[n] from part a. above is the inverse of h[n] from part a.

[4 pts] c. Show that g[n] is the impulse response of a stable system.

[12pts] d. Consider an LTI causal system with Z transform

$$H(z) = \frac{z(z-2)}{z-3/4}$$

Find a **stable** G(z) such that $|H(e^{j\Omega})G(e^{j\Omega})| = 1$ for all Ω .

G(z) =_____

Problem 5. Z Transform (24 pts)

A causal system with input x[n] and output y[n] is described by the difference equation:

$$y[n] + 0.3y[n-1] - 0.4y[n-2] = x[n] - x[n-1]$$

[12 pts] a. Find Y(z) and y[n] for x[n] = 0 (ZIR), with y[-2] = 4 and y[-1] = 2.

 $Y(z) = _ \qquad \qquad y[n] = _$

[12 pts] b. Find Y(z) and y[n] for x[n] = u[n] (ZSR). y[-2] = 0 and y[-1] = 0.

 $Y(z) = _$

y[n] =_____

Problem 6. Digital Filter (34 pts)

A continuous time causal LTI filter has transfer function

$$H(s) = 4\frac{s+1}{s+4}$$

[4 pts] a. Find the linear differential equation with constant coefficients with input x(t) and output y(t) which has transfer function H(s) (assume zero initial conditions).

LDE:_____

[4 pts] b. Using the backward difference approximation for the derivative (i.e.

 $\frac{dy}{dt} \approx \frac{y[n] - y[n-1]}{T}),$

with $T = \frac{1}{2}$, find the linear difference equation approximation with input x[n] and output y[n].

LDE:_____

[4 pts] c. Assuming zero initial conditions, find the Z transform for the LDE in part b.

 $H(z) = _$

[8 pts] e. Sketch the magnitude of frequency response of the continuous time system, labelling key amplitudes.

[8 pts] f. Sketch the magnitude of frequency response of the discrete time system, noting that $T = \frac{1}{2}$ sec., labelling key amplitudes.

[2 pts] g. Briefly explain the reasons for differences between the magnitudes of the CT and DT frequency responses.

Some possibly useful constants:

$\pi \approx 3.14$	$2\pi \approx 6.3$
$3\pi \approx 9.42$	$4\pi \approx 12.6$
$\sqrt{2} \approx 1.4$	$\sqrt{3} \approx 1.7$
$\sqrt{5} \approx 2.2$	$\sqrt{10} \approx 3.2$
$\sqrt{8} \approx 2.8$	$\sqrt{17} \approx 4.1$
$\sqrt{20} \approx 4.5$	$\sqrt{26} \approx 5.1$

[3 pts] a. Find the transfer function $\frac{E(s)}{R(s)}$ in terms of D, G, H_y .

 $\frac{E(s)}{R(s)} = \underline{\qquad}$

[3 pts] b. Find the transfer function $\frac{E(s)}{W(s)}$ in terms of D, G, H_y .

For the system above, let $D(s) = k_p$, $H_y(s) = \frac{s+1}{s}$, and $G(s) = \frac{1}{s^2+as+b}$.

[10 pts] c. With r(t) = 0, determine trend of e(t) as $t \to \infty$ with respect to a step disturbance input w(t).

 $e(t) \rightarrow _$

[8 pts] d. With $w(t) = 0, H_y(s) = 1, D(s)G(s) = \frac{200}{(s+1)^2(s+10)^2}$, determine ω_c for which $|D(j\omega_c)G(j\omega_c)| \approx 1$ and the approximate phase margin. (Hint for small angles $\tan^{-1} 0.1 \approx 0.1$ rad $\approx 5.7^{\circ}$.)

 $\omega_c =$ _____

phase margin (specify rad or degrees)

Problem 8. DFT problem or pole-zero match (22 pts)

sketch $X_1[k]$, the 32 point DFT of $x_1[n]$, labelling amplitudes.

sketch $X_2[k]$, the 32 point DFT of $x_2[n]$, labelling amplitudes.

Area for scratch work.