EECS 120
Final Exam
Fri. May 16, 2014
0810-1100 am
Name: \qquad
SID: \qquad

- Closed book. Three single sided 8.5×11 inch pages of formula sheet. No calculators.
- There are 8 problems worth 200 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	24	
2	29	
3	14	
4	29	
5	24	
6	34	
7	24	
8	22	
TOTAL	200	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan ^{-1} 0.1=5.7^{\circ}$	$\tan ^{-1} 0.2=11.3^{\circ}$
$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} 1=45^{\circ}$
$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$	$\tan ^{-1} \frac{1}{4}=14^{\circ}$
$\tan ^{-1} \sqrt{3}=60^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 60^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 45^{\circ}=\frac{\sqrt{2}}{2}$	$\sin 45^{\circ}=\frac{\sqrt{2}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$	
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$	
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$	
$1 / e \approx 0.37$	$1 / e^{2} \approx 0.14$	$\sqrt{2} \approx 1.41$
$1 / e^{3} \approx 0.05$	$\sqrt{10} \approx 3.16$	$\sqrt{3} \approx 1.73$

Problem 1 LTI Properties (24 pts)

[24 pts] Classify the following systems, with input $x(t)$ (or $x[n]$) and output $y(t)$ (or $y[n]$). In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect).

System	Causal	Linear	Time-invariant	BIBO stable
a. $y(t)=x(t) * \sum_{n=0}^{\infty} \delta(t-4 n)$				
b. $y(t)=x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-4 n)$				
c. $y[n]=x[n] * 0.9^{n} u[n]$				
d. $y[n]=\sum_{m=0}^{\infty} x[m] 0.9^{m}$				
d. $y(t)=x(t) *\left[\delta(t+1)+e^{-2 t} u(t)\right]$				
e. $y(t)=x(t) *\left[\frac{d}{d t} \delta(t-1)+e^{-2 t} u(t)\right]$				

Problem 2 Short Answers (29 pts)
Answer each part independently. Note $\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)$.
[3 pts] a. Evaluate $\delta\left(t+\frac{1}{4}\right) * \cos (2 \pi t) u(t)=$ \qquad
[4 pts] b. Sketch $\Pi(t-1) * \Pi(2 t)$
[4 pts] c. Given an LTI system with input $x(t)=\Pi(t-4.5)$ and output $y(t)=\Pi(2 t)-\Pi(2(t-1))$, find the impulse response of the system,
$h(t)=$ \qquad . (Hint: sketch $x(t)$ and $(y(t))$
[4 pts] d. Given $x(t)=\sum_{n=-\infty}^{\infty}\left[\delta(t-2 n)+\frac{1}{2} \delta(t-2 n+1)\right]$, find $X(j \omega)$ the Fourier Transform of $x(t)$.
$X(j \omega)=$ \qquad
[4 pts] e. What is the energy in the time signal $\frac{\sin (100 \pi t)}{t}$? \qquad
[6 pts] f. A system with input $x(t)$ and output $y(t)$ is described by the following differential equation: $\frac{d^{2}}{d t^{2}} y+2 \frac{d}{d t} y+y=\frac{d}{d t} x+2 x$.

Assuming zero initial conditions, find the impulse response for this system.
$h(t)=$
[4 pts] g. Given the bilateral Laplace transform $X(s)=\frac{1}{s-2}$ and the region of convergence is to the left of the pole at $s=2$, find the inverse Laplace transform,

$$
x(t)=
$$

Problem 3 Laplace Transform (14 pts)
[14 pts] An LTI system has input $x(t)$, output $y(t)$ and transfer function

$$
H(s)=\frac{1}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

For input $x(t)=\left(1+\cos \omega_{n} t\right) u(t)$, find the steady-state solution $y(t)$ for large t.
$y(t)=$ \qquad

Problem 4. Z transform (29 pts)

[10 pts] a. Consider an LTI causal system with impulse response $h[n]=\left(2-\left(\frac{1}{2}\right)^{n}\right) u[n]$. Find $g[n]$ such that $h[n] * g[n]=\delta[n]$.

$$
g[n]=
$$

[3 pts] b. Show by direct calculation that the $g[n]$ from part a. above is the inverse of $h[n]$ from part a.
[4 pts] c. Show that $g[n]$ is the impulse response of a stable system.
[12pts] d. Consider an LTI causal system with Z transform

$$
H(z)=\frac{z(z-2)}{z-3 / 4}
$$

Find a stable $G(z)$ such that $\left|H\left(e^{\jmath \Omega}\right) G\left(e^{\jmath \Omega}\right)\right|=1$ for all Ω.
$G(z)=$ \qquad

A causal system with input $x[n]$ and output $y[n]$ is described by the difference equation:

$$
y[n]+0.3 y[n-1]-0.4 y[n-2]=x[n]-x[n-1]
$$

$[12 \mathrm{pts}]$ a. Find $Y(z)$ and $y[n]$ for $x[n]=0(\mathrm{ZIR})$, with $y[-2]=4$ and $y[-1]=2$.
$Y(z)=$ \qquad
\qquad
[12 pts] b. Find $Y(z)$ and $y[n]$ for $x[n]=u[n]$ (ZSR). $y[-2]=0$ and $y[-1]=0$.
\qquad
$Y(z)=$

$$
y[n]=
$$

\qquad

Problem 6. Digital Filter (34 pts)

A continuous time causal LTI filter has transfer function

$$
H(s)=4 \frac{s+1}{s+4}
$$

[4 pts] a. Find the linear differential equation with constant coefficients with input $x(t)$ and output $y(t)$ which has transfer function $H(s)$ (assume zero initial conditions).

LDE: \qquad
[4 pts] b. Using the backward difference approximation for the derivative (i.e.
$\left.\frac{d y}{d t} \approx \frac{y[n]-y[n-1]}{T}\right)$,
with $T=\frac{1}{2}$, find the linear difference equation approximation with input $x[n]$ and output $y[n]$.

LDE: \qquad
[4 pts] c. Assuming zero initial conditions, find the Z transform for the LDE in part b.
$H(z)=$ \qquad
[4 pts] d. Draw pole-zero diagrams for $H(s)$ in the s-plane and $H(z)$ in the z-plane.

[8 pts] e. Sketch the magnitude of frequency response of the continuous time system, labelling key amplitudes.

[8 pts] f. Sketch the magnitude of frequency response of the discrete time system, noting that $T=\frac{1}{2}$ sec., labelling key amplitudes.
$\left|H\left(e^{j \omega T}\right)\right|:$

[2 pts] g. Briefly explain the reasons for differences between the magnitudes of the CT and DT frequency responses.

Some possibly useful constants:

$$
\begin{array}{c||c}
\pi \approx 3.14 & 2 \pi \approx 6.3 \\
3 \pi \approx 9.42 & 4 \pi \approx 12.6 \\
\sqrt{2} \approx 1.4 & \sqrt{3} \approx 1.7 \\
\sqrt{5} \approx 2.2 & \sqrt{10} \approx 3.2 \\
\sqrt{8} \approx 2.8 & \sqrt{17} \approx 4.1 \\
\sqrt{20} \approx 4.5 & \sqrt{26} \approx 5.1
\end{array}
$$

Problem 7. Control (24 pts)

[3 pts] a. Find the transfer function $\frac{E(s)}{R(s)}$ in terms of D, G, H_{y}.
$\frac{E(s)}{R(s)}=$ \qquad
[3 pts] b. Find the transfer function $\frac{E(s)}{W(s)}$ in terms of D, G, H_{y}.
$\frac{E(s)}{W(s)}=$ \qquad
For the system above, let $D(s)=k_{p}, H_{y}(s)=\frac{s+1}{s}$, and $G(s)=\frac{1}{s^{2}+a s+b}$.
[10 pts] c. With $r(t)=0$, determine trend of $e(t)$ as $t \rightarrow \infty$ with respect to a step disturbance input $w(t)$.
$e(t) \rightarrow$ \qquad
[8 pts] d. With $w(t)=0, H_{y}(s)=1, D(s) G(s)=\frac{200}{(s+1)^{2}(s+10)^{2}}$,
determine ω_{c} for which $\left|D\left(j \omega_{c}\right) G\left(j \omega_{c}\right)\right| \approx 1$ and the approximate phase margin.
(Hint for small angles $\tan ^{-1} 0.1 \approx 0.1 \mathrm{rad} \approx 5.7^{\circ}$.)
$\omega_{c}=$ \qquad
phase margin (specify rad or degrees) \qquad

Problem 8. DFT problem or pole-zero match (22 pts)
[11 pts] a. Given $x_{1}[n]=\cos \left(2 \pi \frac{n}{4}\right)$ as shown:

sketch $X_{1}[k]$, the 32 point DFT of $x_{1}[n]$, labelling amplitudes.

$X_{1}[k]:$ \qquad
[11 pts] b. Given $x_{2}[n]=\cos \left(2 \pi \frac{n}{4}\right)-\delta[n-16]$ as shown:

sketch $X_{2}[k]$, the 32 point DFT of $x_{2}[n]$, labelling amplitudes.

Area for scratch work.

