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• (10 Points) Print your name and lab time in legible, block lettering above
AND on the last page where the grading table appears.

• This exam should take up to 120 minutes to complete. You will be given at
least 120 minutes, up to a maximum of 170 minutes, to work on the exam.

• This exam is closed book. Collaboration is not permitted. You may not use
or access, or cause to be used or accessed, any reference in print or electronic
form at any time during the exam, except three double-sided 8.5”×11” sheets
of handwritten notes having no appendage. Computing, communication,
and other electronic devices (except dedicated timekeepers) must be turned
off. Noncompliance with these or other instructions from the teaching staff—
including, for example, commencing work prematurely or continuing beyond the
announced stop time—is a serious violation of the Code of Student Conduct.
Scratch paper will be provided to you; ask for more if you run out. You may
not use your own scratch paper.

• The exam printout consists of pages numbered 1 through 14. When you are
prompted by the teaching staff to begin work, verify that your copy of the
exam is free of printing anomalies and contains all of the fourteen numbered
pages. If you find a defect in your copy, notify the staff immediately.

• You will be given a separate document containing formulas and tables.

• Please write neatly and legibly, because if we can’t read it, we can’t grade it.

• For each problem, limit your work to the space provided specifically for that
problem. No other work will be considered in grading your exam. No exceptions.

• Unless explicitly waived by the specific wording of a problem, you must ex-
plain your responses (and reasoning) succinctly, but clearly and convincingly.

• We hope you do a fantastic job on this exam.
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The Z-transform of a signal x : Z→ C:

X̂(z) =
+∞∑

n=−∞
x(n)z−n.

A couple of Z-transform pairs:

αnu(n)
Z←→ 1

1− αz−1
, |z| > |α|.

αn cos(ω0n)u(n)
Z←→ 1− α cos(ω0)z

−1

1− 2α cos(ω0)z−1 + α2z−2
, |z| > α > 0.

The Laplace transform of a signal x : R→ C:

X̂(s) =

∫ +∞

−∞
x(t) e−st dt .

Some Laplace transform pairs:

u(t)
L←→ 1

s
, Re(s) > 0

e−αtu(t)
L←→ 1

s + α
, Re(s) > −α

e−αt sin(ω0t)u(t)
L←→ ω0

(s + α)2 + ω2
0

, Re(s) > −α

α ∈ R in the above Laplace transform pairs.
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F-S07.1 (40 Points) A plant with transfer function

H2(s) =
s + 1

s (s− 1)

is arranged in a feedback configuration with a proportional controller K, as shown
in the figure below.

+ K H2

x y

-

(a) What is the closed-loop transfer function?

(b) For what values of K is the closed-loop system BIBO stable?
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(c) What is the impulse response of the closed-loop system for K = 1?

(d) Suppose K = 6 and x(t) = u(t), the unit step.

Determine y(t), t ≥ 0. Express y in terms of its transient and steady-state
components,

y(t) = ytr(t) + yss(t).
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F-S07.2 (40 Points) Consider the acoustic environment of a lecture hall, where x
denotes the sound created by a speaker, and y the speaker’s sound as heard by a
listener’s ear. The physical characteristics of the hall produce acoustic distortion
in the speaker’s sound; what the listener hears is not the same as what the speaker
utters.

Suppose that a particular lecture hall produces linear, time-invariant acoustic dis-
tortion. Therefore, it can be well-modeled by a discrete-time LTI system F : [Z →
C] → [Z → C] whose input x is the speaker’s utterance and whose output y is the
speaker’s sound as perceived by the listener.

In particular, suppose the input-output model of the lecture hall is modeled by the
linear, constant-coefficient difference equation

y(n)− 2 Re(a) y(n− 1) + |a|2 y(n− 2) = x(n− 1),

where a ∈ C is a parameter that models the acoustic resonance properties of the
hall and is within the unit circle (i.e., |a| < 1).

(a) Determine F̂ , the system function of the hall. Your expression must be in
terms of the resonance parameter a. Write the expression for F̂ so that its
denominator is a product of two first-order factors.

(b) Suppose the resonance parameter a = 0.99 eiπ/4. Provide both a well-labeled
pole-zero diagram for F̂ and a well-labeled, but otherwise rough, sketch of
the magnitude of the frequency response |F (ω)|,∀ω ∈ [−π, +π].
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We want to upgrade the public address system in the lecture hall to correct for
the distortion caused by the hall’s acoustic environment. The upgrade includes a
compensator that allows listeners to hear all the frequencies in a speaker’s sound
equally well. Such a compensator is called an equalizer.

(c) Suppose the equalizer is a DT-LTI system G, and is simply the inverse of the
system F. That is,

Ĝ(z) =
1

F̂ (z)
.

Determine the impulse response g of the proposed equalizer G. Explain why
such a system cannot be used as a real-time equalizer to correct for the lecture
hall’s acoustic distortion, even if our DT-LTI model of the lecture hall is rea-
sonably accurate.

(d) Another proposal is to construct an equalizer that approximates the inverse of
the lecture hall’s DT-LTI model, but is real-time implementable. The proposal
is to design an equalizer according to the following feedback configuration:

Suppose the equalizer is designed so that |β F̂ (z)| À 1. Explain why this
proposed equalizer is a reasonably good choice to correct for the distortion of
the lecture hall; in particular, explain why such an equalizer is implementable
in real time.
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F-S07.3 (60 Points) The bilinear transformation is a tool for designing a discrete-time
LTI filter from a continuous-time counterpart.

The process begins with an already-designed analog filter having system function
Ĥc. The discrete-time filter is then obtained by letting

s =
2

T

1− z−1

1 + z−1
(1)

in the system function expression Ĥc(s), where T > 0 is a parameter whose value
is chosen based on convenience.

Simply put, the system function Ĥd of the discrete-time filter is designed from its
continuous-time counterpart according to the equation

Ĥd(z) = Ĥc(s)
∣∣∣
s= 2

T
1−z−1

1+z−1

.

(a) Show that the bilinear transformation maps every point in the left-half of the
s-plane to a corresponding point inside the unit circle in the z-plane. To do
this, first use Equation 1 to express z in terms of s. Next, write s in its Carte-
sian form s = σ + iω, and show that if σ < 0, then |z| < 1.

(b) Show that the iω-axis in the s-plane maps to the unit circle in the z-plane. Do
this by demonstrating that if s = iω, then |z| = 1.

7



(c) True or false?

A discrete-time filter obtained by applying the bilinear transformation
to a continuous-time filter is causal and stable, if the continuous-time
filter is causal and stable.

Explain your reasoning succinctly, but clearly and convincingly.

(d) The result of part (b) suggests a relationship between the continuous-time
frequency variable ω (having units of radians/sec) and the frequency vari-
able Ω (having units of radians/sample) of the corresponding discrete-time
filter.

Use the result of part (b) to show that s = iω and z = eiΩ can be inserted in
Equation 1 to establish the following relationship between the two frequency
variables:

ω =
2

T
tan

(
Ω

2

)
or, equivalently, Ω = 2 arctan

(
ωT

2

)
.
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(e) The magnitude of the frequency response of a continuous-time LTI filter is
shown in the figure below.

The frequency ωp defines the boundary of the filter’s passband cutoff fre-
quency, and the frequency ωs demarcates the beginning of the stopband.

The quantity 1− δp specifies the minimum passband gain and the quantity δs

specifies the maximum stopband gain.

Use the result of part (d) to provide a well-labeled magnitude response plot
of the discrete-time filter obtained by applying the bilinear transformation of
Equation 1 to the continuous-time filter above.
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(f) The system function Ĥc of a continuous-time, causal, and stable N th-order
Butterworth filter satisfies the following equation:

Ĥc(s) Ĥc(−s) =
1

1 +

(
s

iωc

)2N
,

where ωc is a positive frequency.

A discrete-time filter Hd is designed by applying the bilinear transformation
of Equation 1 (with T = 2) to the N th-order continuous-time Butterworth fil-
ter Hc. In particular, the system function Ĥd of the discrete-time ”Butterworth
filter” satisfies the following equation:

Ĥd(z) Ĥd(1/z) =
1

1 +

(
s

iωc

)2N

∣∣∣∣∣∣∣∣∣
s= 1−z−1

1+z−1

.

Determine the response of the discrete-time filter Hd to the input signal xd(n) =
(−1)n,∀n ∈ Z.
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F-S07.4 (50 Points) A continuous-time, causal, LTI filter Hc has a real-valued im-
pulse response hc and a rational transfer function Ĥc.

A simple input-output graphical depiction of the filter is

The pole-zero diagram of the filter is shown below. Note that the transfer function
does not have a finite-valued zero.

(a) If the input signal x is characterized by x(t) = 1, ∀t, the corresponding output
signal is

y(t) =
1

α
(
α2 + ω2

0

) , ∀t.

Determine a fairly simple expression for the transfer function Ĥc(s).
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(b) Suppose the input signal x is the unit step: x(t) = u(t). Determine a simple
expression for yss(t), the corresponding steady-state response of the filter.

(c) Determine a fairly simple expression for, and provide a well-labeled sketch
of, hc(t).
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(d) We wish to use the impulse invariance method to design a discrete-time LTI
filter Hd from the continuous-time LTI filter Hc. According to this method,
the impulse response values hc(t) are sampled to produce the discrete-time
filter’s impulse response values hd(n). In particular,

hd(n) = T hc(nT ), ∀n ∈ Z,

where T > 0 is the sampling period. Let Ĥd denote the transfer function of
the discrete-time filter.

It turns out that the discrete-time filter has exactly two finite zeroes (at z =
0 and z = −e−αT ) and exactly one zero at |z| = +∞. Do not attempt to
show this, as it involves algebraic manipulations far beyond the scope of
this problem. Instead, simply treat as factual the information about the zero
locations, and focus on drawing inferences from it about the number of poles.

(i) Determine a simple expression for each of the poles of Ĥd(z); your ex-
pressions must be in terms of a subset of the parameters α, T , and ω0.
Please note that you are not being asked to determine an expression for
the transfer function Ĥd.

(ii) Provide a well-labeled pole-zero diagram for Ĥd, assuming α = 1, ω0 =
2π · 1000, and T = 1

6000
.

(iii) Determine the RoC of the transfer function Ĥd, and state whether the
discrete-time filter is causal, BIBO stable, neither, or both.
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LAST Name FIRST Name

Lab Time

Problem Points Your Score
Name 10

1 40

2 40

3 60

4 50

Total 200
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