## EECS 120, Midterm 1 Solution, 3/8/06

Do your calculations on the sheets and put a box around your answer where this makes sense. Print your name and your TA's name and section time here:

Last Name $\qquad$ First $\qquad$ TA's name $\qquad$ Section time $\qquad$

| Prob \# <br> 1 | Max <br> 15 | Score |
| :--- | ---: | :--- |
| 2 | 15 |  |
| 3 | 10 |  |
| 4 | 15 |  |
| 5 | 20 |  |
| 6 | 10 |  |
| 7 | 15 |  |
| Total | 100 |  |

## Useful tips

## FT pairs

| Signal $t \rightarrow x(t)$ | $\omega \rightarrow X(\omega)$ | $f \rightarrow X(f)$ |
| :--- | :--- | :--- |
| $X(t)$ | $2 \pi x(-\omega)$ | $x(-f)$ |
| $x(t) \equiv 1$ | $X(\omega)=2 \pi \delta(\omega)$ | $X(f)=\delta(f)$ |
| $x(t)=\delta(t)$ | $X(\omega) \equiv 1$ | $X(f) \equiv 1$ |
| $x(t)=\operatorname{sgn}(t)$ | $X(\omega)=\frac{2}{j \omega}$ | $X(f)=\frac{1}{j \pi f}$ |
| $x(t)=u(t)$ | $X(\omega)=\frac{1}{j \omega}+\pi \delta(\omega)$ | $X(f)=\frac{1}{j 2 \pi f}+\frac{1}{2} \delta(f)$ |
| $x(t)=\frac{1}{\pi t}$ | $X(\omega)=-j \operatorname{sgn}(\omega)$ | $X(f)=-j \operatorname{sgn}(f)$ |
| $x(t)=\Pi(t)=1,\|t\| \leq 1 / 2,0$ else | $\frac{\sin (\pi f)}{\pi f}$ | $\frac{\sin (\omega / 2)}{\omega / 2}$ |
| $\sum \delta\left(t-k T_{0}\right)$ | $\frac{1}{T_{0}} \sum \delta\left(f-f_{0}\right)$ | $\frac{2 \pi}{T_{0}} \sum \delta\left(\omega-\omega_{0}\right)$ |
| $X_{n} \sum e^{j n \omega_{0} t}$ | $\sum X_{n} \delta\left(f-n f_{0}\right)$ | $2 \pi \sum \delta\left(\omega-n \omega_{0}\right)$ |
| $\hat{x}(t)$ | $-j \operatorname{sgn}(f) X(f)$ | $-j \operatorname{sgn}(\omega) X(\omega)$ |

## FT properties

| $x(a t)$ | $\frac{1}{\|a\|} X\left(\frac{f}{a}\right)$ | $\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$ |
| :--- | :--- | :--- |
| $x * y$ | $X(f) Y(f)$ | $X(\omega) Y(\omega)$ |
| $x(t) y(t)$ | $(X * Y)(f)$ | $\frac{1}{2 \pi}(X * Y)(\omega)$ |
| $X(t)$ | $x(-f)$ | $2 \pi x(-\omega)$ |
| $e^{2 \pi f_{0} t} x(t)$ | $X\left(f-f_{0}\right)$ | $X\left(\omega-\omega_{0}\right)$ |
| $\dot{x}(t)$ | $(j 2 \pi f) X(f)$ | $(j \omega) X(\omega)$ |
| $\int_{-\infty}^{t} x(s) d s$ | $\frac{1}{j 2 \pi f}+\frac{1}{2} X(0) \delta(f)$ | $\frac{1}{j \omega} X(\omega)+\pi X(0) \delta(\omega)$ |

Parseval's theorem.

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega
$$

Trig identities

$$
\begin{aligned}
\sin (x \pm y) & =\sin x \cos y \pm \cos x \sin y \\
\cos (x \pm y) & =\cos x \cos y \mp \sin x \sin y \\
\sin x \sin y & =\frac{1}{2}[\cos (x-y)-\cos (x+y)] \\
\cos x \cos y & =\frac{1}{2}[\cos (x-y)+\cos (x+y)] \\
\sin x \cos y & =\frac{1}{2}[\sin (x-y)+\sin (x+y)
\end{aligned}
$$

1. $\mathbf{1 5}$ points Find the FT of $x$, and sketch the real and imaginary parts of $X(\omega)$, where

$$
\forall t, \quad x(t)=\Pi(t) * \Pi(t) * \sum_{-\infty}^{\infty} \delta(t-8 n)
$$

Here $\Pi(t)=1$ for $|t| \leq 1 / 2$ and 0 , else. In your sketch carefully mark the relevant frequencies and magnitudes.

## Answer

From Table above the FT of

$$
\Pi \leftrightarrow X_{1}: \omega \mapsto \frac{\sin (\omega / 2)}{\omega / 2} .
$$

From the Table above,

$$
t \mapsto \sum_{-\infty}^{\infty} \delta(t-8 n) \leftrightarrow X_{2}: \omega \mapsto \frac{2 \pi}{8} \sum_{k=-\infty}^{\infty} \delta\left(\omega-\frac{2 \pi k}{8}\right)
$$

By the convolution property,

$$
\begin{aligned}
x \leftrightarrow X(\omega) & =\left[X_{1}(\omega)\right]^{2} X_{2}(\omega) \\
& =\left[\frac{\sin (\omega / 2)}{\omega / 2}\right]^{2} \frac{2 \pi}{8} \sum_{k} \delta\left(\omega-\frac{2 \pi k}{8}\right) \\
& =\frac{2 \pi}{8} \sum_{k}\left[\frac{\sin (2 \pi k / 16)}{2 \pi k / 16}\right]^{2} \delta\left(\omega-\frac{2 \pi k}{8}\right)
\end{aligned}
$$

$X$ is a real-valued function, its imaginary part is zero. A sketch of $X$ is shown in figure 1.


Figure 1: Sketch of $X$ in problem 1. Only the positive frequencies are shown, since $X(\omega)=$ $X(-\omega)$.

## 2. $\mathbf{1 5}$ points

(a) Find and sketch the FT of

$$
x(t)=\left[\frac{\sin \pi t}{\pi t}\right]^{2} e^{-j 2 \pi \times 10 t}
$$

(b) Use Parseval's theorem to find the energy in the signal $x$.

## Answer

From Table above,

$$
\Pi(t) \leftrightarrow \frac{\sin \omega / 2}{\omega / 2} .
$$

From Table above,

$$
\frac{\sin \pi t}{\pi t} \leftrightarrow 2 \pi \Pi(-\omega)=2 \pi \Pi(\omega)
$$

From Table above, $[x(t)]^{2} \leftrightarrow(1 / 2 \pi)(X * X)(\omega)$, so

$$
\left[\frac{\sin \pi t}{\pi t}\right]^{2} \leftrightarrow \frac{1}{2 \pi}(2 \pi)^{2}(\Pi * \Pi)(\omega)=2 \pi(\Pi * \Pi)(\omega)
$$

$\Pi * \Pi$ has the triangle shaped graph shown in Figure 2.
(a) The FT of $x$ is

$$
X(\omega)=2 \pi(\Pi * \Pi)(\omega-2 \pi \times 10)
$$

and is sketched in Figure 2.


Figure 2: Sketch of $X$ for problem 2
(b) By Parseval's theorem the energy in $x$ is

$$
\int|x(t)|^{2} d t=\frac{1}{2 \pi} \int|X(\omega)|^{2} d \omega=\frac{2}{2 \pi} \int_{0}^{2 \pi}\left[\frac{\omega}{2 \pi}\right]^{2} d \omega=\frac{2}{3}
$$

3. 10 points The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.
(a) If $x(t), t \in$ Reals, is a real-valued signal, its Fourier transform $X(f), f \in$ Reals, is also realvalued.
(b) If $x(t), y(t), t \in$ Reals, are real-valued signals and $(x * y)(t)=0, \forall t \in$ Reals, then either $x$ or $y$ is identically zero.
(c) If $x(t), t \in$ Reals, is a real-valued, baseband signal with bandwidth $W \mathrm{~Hz}$, then the signal $y$, $y(t)=x^{4}(t), t \in$ Reals, has bandwidth at most $4 W \mathrm{~Hz}$.
(d) If $x(t), t \in$ Reals is a real-valued, band-limited signal with bandwidth $W \mathrm{~Hz}$, then the signal $y(t)=x(2 t), t \in$ Reals, has bandwidth $W^{2} \mathrm{~Hz}$.
(e) If $x, y$ are real-valued signals with bandwidth $W_{x}, W_{y} \mathrm{~Hz}$, respectively, then the signal $x+y$ has bandwidth $W_{x}+W_{y} \mathrm{~Hz}$.

## Answer

(a) FALSE. The function $\forall t, x(t)=\operatorname{sgn}(t)$ is real-valued, but its Fourier transform is $\forall \omega, X(\omega)=$ $\frac{2}{j \omega}$ which is not real-valued.
(b) FALSE. Take a band-limited signal $x$ for example, $x(t)=\sin (t) / t$ has bandwidth 1 radian $/ \mathrm{sec}$, so $|X(\omega)|=0,|\omega|>1$. Now take $y(t)=x(t) \cos (10 t)$. Then $Y(\omega)=1 / 2[X(\omega-10)+X(\omega+$ 10). It follows that $X(\omega) Y(\omega)=0$ for all $\omega$. But then $(x * y)(t)=0$ for all $t$, even though neither $x$ nor $y$ is identically zero.
(c) TRUE. $y \leftrightarrow Y=X * X * X * X$. If $X(f)=0$ for $|f|>W$, then $X * X * X * X(f)=0$ for $|f|>4 W$.
(d) FALSE. From the time scale property, $Y(f)=1 / 2 X(f / 2)$. So the bandwidth of $y$ is $2 W \neq$ $W^{2}$, if $W \neq 2$.
(e) FALSE. Take $y=x$. Then $x+y \leftrightarrow 2 X$ has bandwidth $W_{x}$.
4. 15 points The following statements are either TRUE or FALSE. If you believe a statement is true, outline a BRIEF PROOF. If you believe it is false, provide a BRIEF COUNTEREXAMPLE.
(a) The system that takes as input a signal $m$ and produces its Hilbert transform $\hat{m}$ as output is an LTI system.
(b) The SSB-USB modulator which takes as input a signal $m(t), t \in$ Reals, and produces as output the modulated signal $x(t), t \in$ Reals, is a linear system.
(c) The narrow-band FM system which takes as input the continuous-time signal $m$ and produces as output the modulated signal $x$, is a linear system.
(d) The AM-DSB modulator is a time-invariant system.
(e) The signal $\forall t, x(t)=\cos \left(2 \pi f_{c} t+\cos \left(2 \pi f_{m} t\right)\right)$ has infinite bandwidth.
(f) It is possible to recover the signals $A$ and $\theta$ from the narrowband signal $\forall t, x(t)=A(t) \cos \left(2 \pi f_{c} t+\right.$ $\theta(t))$.

## Answer

(a) TRUE, because $\hat{m}=m * h$ where $h$ is the impulse response of the Hilbert transform.
(b) TRUE, because

$$
\begin{aligned}
\forall t, \quad x(t) & =[m(t)+j \hat{m}(t)] e^{j \omega_{c} t} \\
& =(m *(\delta+j h))(t) e^{j \omega_{c} t}
\end{aligned}
$$

(where $h$ is as in part (a)) and the operations above are linear.
(c) FALSE, because the signal $x$ is

$$
\forall t, \quad x(t)=\cos 2 \pi f_{c} t-m(t) \sin 2 \pi f_{c} t
$$

and this is not a linear relation: for example $x \neq 0$ even if $m(t) \equiv 0$.
(d) FALSE. The modulator is a linear, memoryless, time-varying system:

$$
x(t)=m(t) \cos 2 \pi f_{c} t
$$

(e) TRUE. The signal is periodic in $t$ with period $1 / f_{m}$ since $x\left(t+1 / f_{m}\right)=\cos \left(\cos \left(2 \pi f_{m}(t+\right.\right.$ $\left.\left.1 / f_{m}\right)\right)=\cos \left(\cos \left(2 \pi f_{m} t\right)\right)$. It is also an even function of $t$. Hence $x$ has a Fourier series representation

$$
x(t)=\sum_{k=0}^{\infty} a_{k} \cos \left(k 2 \pi f_{m} t\right)
$$

which has infinite bandwidth.
(f) TRUE. Construct the signal $z$ by

$$
\forall t, \quad z(t)=[x(t)+j \hat{x}(t)] e^{-j 2 \pi f_{c} t}
$$

where $\hat{x}$ is the Hilbert transform of $x$. Then $z(t)=A(t) e^{j \theta(t)}$, so $A(t)=|z(t)|$ and $\theta(t)=$ $\angle z(t)$.
5. 20 points Figure 3 is a block diagram of vestigial sideband (VSB) modulation/demodulation. The


Figure 3: The VSB modulation-demodulation scheme of problem 5
baseband signal $m$ has FT $M$ as shown, with bandwidth $B \mathrm{rad} / \mathrm{sec}$. It modulates the carrier $\cos \left(\omega_{c} t\right)$ $\left(\omega_{c} \gg B\right)$ to produce the signal $u$, which is passed through the VSB filter, whose frequency response $H(\omega)$ is shown. The result is the transmitted signal $v$. The coherent receiver multiples $v$ by the carrier to produce $w$, which is then passed through a low pass filter (LPF) to obtain the signal $x$.
(a) Sketch the FT of $u, v$, and $w$. Carefully mark relevant magnitudes and frequencies.
(b) Show that $x=(1 / 4) m$ if the VSB filter satisfies

$$
H\left(\omega+\omega_{c}\right)+H\left(\omega-\omega_{c}\right)=1, \text { for }|\omega| \leq B
$$

Answer We have


Figure 4: The FTs for problem 5

$$
\begin{aligned}
U(\omega) & =\frac{1}{2}\left[M\left(\omega-\omega_{c}\right)+M\left(\omega+\omega_{c}\right)\right], \quad V(\omega)=\frac{1}{2} H(\omega)\left[M\left(\omega-\omega_{c}\right)+M\left(\omega+\omega_{c}\right)\right] \\
W(\omega) & =\frac{1}{2}\left[V\left(\omega-\omega_{c}\right)+V\left(\omega+\omega_{c}\right)\right] \\
& =\frac{1}{4}\left[H\left(\omega-\omega_{c}\right)\left\{M\left(\omega-2 \omega_{c}\right)+M(\omega)\right\}+H\left(\omega-\omega_{c}\right)\left\{M(\omega)+M\left(\omega+2 \omega_{c}\right\}\right]\right. \\
& =\frac{1}{4} M(\omega)\left[H\left(\omega-\omega_{c}\right)+H\left(\omega+\omega_{c}\right)\right], \text { for }|\omega|<B
\end{aligned}
$$

Figure 4 shows the FTs for (a). Part (b) follows from the last equation.
6. 10 points Figure 5 is a block diagram of a digital communication system. The digital channel accepts


Figure 5: The communication system for problem 5
at its input port any symbol from $\{a, b, c, d, e\}$ and delivers it at its output port. The channel can accept one symbol every $2 \mu \mathrm{sec}$.
(a) What is the baud rate of the channel? What is its capacity in bits/sec?
(b) A binary source $m$ produces data at $1 \mathrm{Mb} / \mathrm{sec}$. ( 1 Mb is one million bits.) Is the rate of the source smaller than the capacity? If it is, construct a "coder" that maps the binary source $m$ into a sequence of symbols $x$, and a "decoder" that maps $x$ into a binary sequence $m^{\prime}$ such that $m^{\prime}=m$.

## Answer

(a) The baud rate is $1 /\left(2 \times 10^{-6}\right)=500,000$ symbols/sec. The channel capacity is $C=\log _{2}(5) \times$ $500,000 \mathrm{bps}$.
(b) Yes. $C>10^{6}$, since $\log _{2}(5)>\log _{2} 4=2$.

The coder should map pairs of bits into distinct symbols, the decoder should do the inverse. They are given by the following assignments:

$$
\text { Coder : } 00 \rightarrow a ; 01 \rightarrow b ; 10 \rightarrow c ; 11 \rightarrow d
$$

$$
\text { Decoder : } a \rightarrow 00 ; b \rightarrow 01 ; c \rightarrow 10 ; d \rightarrow 11
$$

7. 20 points $m$ is a complex-valued signal with bandwidth $B_{m} \mathrm{rad} / \mathrm{sec}$ whose real and imaginary parts are $m_{1}, m_{2}$ respectively. Let $M(\omega), M_{1}(\omega)$ and $M_{2}(\omega)$ be the FT of $m, m_{1}$ and $m_{2}$, respectively.
(a) Find $M_{1}$ and $M_{2}$ in terms of $M$. Show that the bandwidth of $m_{1}, m_{2}$ is at most $B_{m}$.
(b) Design a modulation and demodulation scheme that can transmit $m_{1}$ and $m_{2}$ over a channel with bandwidth $2 B_{m}$ centered at frequency $\omega_{c} \mathrm{rad} / \mathrm{sec}$.
(c) Give a brief mathematical argument to show that the transmitted signal is within the channel bandwidth, and that the receiver can recover both signals.

## Answer

(a) $M(\omega)=\int m(t) e^{-j \omega t} d t ; M^{*}(\omega)=\int m^{*}(t) e^{j \omega t} d t ; M^{*}(-\omega)=\int m^{*}(t) e^{-j \omega t} d t$. Since $m+$ $m^{*}=2 m_{1}$ and $m-m^{*}=2 j m_{2}$,

$$
\begin{aligned}
M(\omega)+M^{*}(-\omega) & =\int\left[m(t)+m^{*}(t)\right] e^{-j \omega t} d t=2 M_{1}(\omega) \\
M(\omega)-M^{*}(-\omega) & =\int\left[m(t)-m^{*}(t)\right] e^{-j \omega t} d t=2 j M_{2}(\omega)
\end{aligned}
$$

(b) The modulated signal is

$$
x(t)=m_{1}(t) \cos \left(\omega_{c} t\right)+m_{2}(t) \sin \left(\omega_{c} t\right) .
$$

To recover the signals we use coherent demodulation. Multiply $x$ by $\cos \omega_{c} t$ and pass the product through a LPF with cutoff $B_{m}$ to recover $m_{1}$; multiply $x$ by $\sin \omega_{c} t$ and pass the product through a LPF with cutoff $B_{m} \mathrm{~Hz}$ to recover $m_{2}$.
(c) We have

$$
\begin{aligned}
x(t) & \leftrightarrow X(\omega) \\
& =M_{1}(\omega) * \frac{1}{2}\left[\delta\left(\omega-\omega_{c}\right)+\delta\left(\omega+\omega_{c}\right)\right]+M_{2}(\omega) \frac{1}{2 j}\left[\delta\left(\omega-\omega_{c}\right)-\delta\left(\omega+\omega_{c}\right)\right] \\
& =\frac{1}{2}\left[M_{1}\left(\omega-\omega_{c}\right)+M_{1}\left(\omega+\omega_{c}\right)\right]+\frac{1}{2 j}\left[M_{2}\left(\omega-\omega_{c}\right)-M_{2}\left(\omega+\omega_{c}\right)\right],
\end{aligned}
$$

which shows that $|X(\omega)|=0,\left||\omega|-\omega_{c}\right|>B_{m}$.
To show that the demodulation scheme works:

$$
\begin{aligned}
x(t) \cos \left(2 \pi f_{c} t\right) & =m_{1}(t) \cos ^{2}\left(\omega_{c} t\right)+m_{2}(t) \sin \left(\omega_{c} t\right) \cos \left(\omega_{c} t\right) \\
& =\frac{1}{2}\left[m_{1}(t)+m_{1}(t) \cos \left(2 \omega_{c} t\right)\right]+\frac{1}{2} m_{2}(t) \sin \left(2 \omega_{c} t\right) \\
& \rightarrow \frac{1}{2} m_{1}(t) \text { after passing through LPF }
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
x(t) \sin \left(\omega_{c} t\right) & =m_{1}(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)+m_{2}(t) \sin ^{2}\left(\omega_{c} t\right) \\
& =\frac{1}{2} m_{1}(t) \sin \left(2 \omega_{c} t\right)+\frac{1}{2}\left[m_{2}(t)-m_{2}(t) \cos \left(2 \omega_{c} t\right)\right] \\
& \rightarrow \frac{1}{2} m_{2}(t) \text { after passing through LPF. }
\end{aligned}
$$

