

## EECS 120. Midterm No. 2, March 24, 2000. Solution.

## 1. 20 points

(a) Plot the Fourier Transform $X(\omega)$ of a signal $x \in C o n t S i g n a l s$ whose total energy is 2 and such that $X(\omega)=0$ for $|\omega-2 \pi|>\pi$.
(b) Now find the time-domain signal $x$ by taking the inverse FT of $X$.

Answer Take $X$ as shown in Figure 1. By Parseval's relation its energy is

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(\omega)|^{2} d \omega=\frac{1}{2 \pi} \times 2 \pi \times 2=2
$$

Recall that

$$
\begin{equation*}
y(t)=\frac{\sin (\pi t)}{\pi t} \stackrel{F T}{\longleftrightarrow} Y(\omega)=1,|\omega| \leq \pi,=0,|\omega|>\pi \tag{1}
\end{equation*}
$$

Observe that $X(\omega)=2^{1 / 2} Y(\omega-2 \pi)$, and so

$$
x(t)=2^{1 / 2} y(t) e^{j 2 \pi t}
$$

2. $\mathbf{1 5}$ points Fill in the blanks.
(a) The LT of $x(t)=t u(t)$ is $\frac{1}{s^{2}}$ and its ROC is $\operatorname{Real}(s)>0$.
(b) The LT of $x(t)=e^{-t} u(t)$ is $\frac{1}{s+1}$ and its FT is $\frac{1}{j \omega+1}$.
(c) The transfer function $H(s)=\frac{s-1}{s+1}$ of an LTI system has a pole at $\qquad$ and its impulse response is $h(t)=$ $\qquad$ .

Answer (c) $H(s)=\frac{s-1}{s+1}$ has a pole at $s=-1$. Using partial fraction expansion, $H(s)=1-\frac{2}{s+1}$. Taking inverse LT gives

$$
h(t)=\delta(t)-2 e^{-t} u(t) .
$$

3. 20 points Find the solution $y(t), t \geq 0$, of the differential equation

$$
\ddot{y}(t)-3 \dot{y}(t)+2 y(t)=0,
$$

with initial condition $y(0-)=1, \dot{y}(0-)=1$. Check that your solution satisfies these initial conditions.
Answer Taking LT of the differential equation gives,

$$
s^{2} Y(s)-s y(0-)-\dot{y}(0-)-3 s Y(s)+3 y(0-)+2 Y(s)=0,
$$

so, substituting for initial conditions,

$$
Y(s)=\frac{s-2}{s^{2}-3 s+2}=\frac{1}{s-1} .
$$

Taking inverse LT gives

$$
y(t)=e^{t} u(t) .
$$

Check initial conditions: $y(0)=1$, and $\dot{y}(0)=1$.


Figure 1: System for Problem 4
4. 20 points In Figure $1 K$ is a real constant. Find the closed-loop transfer function $H(s)$. Use the Routh test to determine the values of $K$ for which $H$ is stable.
Answer The closed-loop transfer function is

$$
H(s)=\frac{G}{1+G},
$$

where $G(s)=\frac{K(s+0.5)}{s} \times \frac{5}{s(s+1)}$. Substituting gives, after some simplification,

$$
H(s)=\frac{5 K(s+0.5)}{s^{3}+s^{2}+5 K s+2.5 K} .
$$

The Routh test on the denominator $D(s)=s^{3}+s^{2}+5 K s+2.5 K$ gives

| $s^{3}$ | 1 | $5 K$ |
| :--- | :--- | :--- |
| $s^{2}$ | 1 | $2.5 K$ |
| $s^{1}$ | $2.5 K$ | 0 |
| $s^{0}$ | $2.5 K$ | 0 |

So $H$ is stable if and only if $K>0$.


Figure 2: System for Problem 5
5. 25 points In Figure $2 m_{1}$ and $m_{2}$ are real signals with real Fourier Transforms $M_{1}(f)$ and $M_{2}(f)$ respectively. Suppose that $M_{i}(f)=0$, for $|f|>15 \mathrm{kHz}$. The carrier frequency $f_{c}=100 \mathrm{kHz}$.
(a) Determine the Fourier Transform $X(f)$ of the modulated signal $x$. Write an expression for $|X(f)|$. What is the bandwidth of $x$ ?
(b) Find a scheme to demodulate $x$ and recover both signals $m_{1}$ and $m_{2}$. Prove that your scheme works.

## Answer We have

$$
\begin{aligned}
x(t) & =A m_{1}(t) \cos 2 \pi f_{c} t+A m_{2}(t) \sin 2 \pi f_{c} t \\
& =\frac{A}{2} m_{1}(t)\left[e^{j 2 \pi f_{c} t}+e^{-j 2 \pi f_{c} t}\right]+\frac{A}{2 j} m_{2}(t)\left[e^{j 2 \pi f_{c} t}-e^{-j 2 \pi f_{c} t}\right] \\
& \longleftrightarrow X(f)=\frac{A}{2}\left[M_{1}\left(f-f_{c}\right)+M_{1}\left(f+f_{c}\right)\right]+\frac{A}{2 j}\left[M_{2}\left(f-f_{c}\right)-M_{2}\left(f+f_{c}\right)\right]
\end{aligned}
$$

and since $M_{1}, M_{2}$ are real,

$$
\begin{aligned}
|X(f)| & =\frac{A}{2}\left\{\left[M_{1}\left(f-f_{c}\right)+M_{1}\left(f+f_{c}\right)\right]^{2}+\left[M_{2}\left(f-f_{c}\right)+M_{2}\left(f+f_{c}\right)\right]^{2}\right\} \\
& =\frac{A}{2}\left\{\left[M_{1}^{2}\left(f-f_{c}\right)+M_{2}^{2}\left(f-f_{c}\right)\right]^{1 / 2}+\left[M_{1}^{2}\left(f+f_{c}\right)+M_{2}^{2}\left(f+f_{c}\right)\right]^{1 / 2}\right\}^{1 / 2}
\end{aligned}
$$

The bandwidth of $X$ is 30 kHz , twice the bandwidth of $m_{1}$ (and $m_{2}$ ).
To demodulate, we multiply $x$ by $\cos 2 \pi f_{c} t$ and pass the result through a LPF and separately multiply $x$ by $\sin 2 \pi f_{c} t$ and pass the result through a LPF. Thenb

$$
\begin{aligned}
x(t) \cos 2 \pi f_{c} t & =A m_{1}(t) \cos ^{2}\left(2 \pi f_{c} t\right)+A m_{2}(t) \sin \left(2 \pi f_{c} t\right) \cos \left(2 \pi f_{c} t\right) \\
& =\frac{A}{2} m_{1}(t)\left[1+2 \cos \left(4 \pi f_{c} t\right)\right]+\frac{A}{2} m_{2}(t) \sin \left(4 \pi f_{c} t\right) .
\end{aligned}
$$

If this signal is passed through a LPF with bandwidth 15 KHz , the output signal will be $\frac{A}{2} m_{1}(t)$, since the other signals are located near $2 f_{c}=200 \mathrm{KHz}$.
Similarly, $x(t) \sin 2 \pi f_{c} t$, passed through a LPF will give as output the signal $\frac{A}{2} m_{2}(t)$.

