EECS 120. Solutions to Midterm No. 1, February 17, 2000.

1. 20 points Find the expression for the frequency response from x to y in terms of H_{1}, H_{2}, H_{3} for the system depicted in:
(a) Part (a) of Figure 1.

Ans Fix $\omega \in$ Reals and take as input the signal $x: t \mapsto X(\omega) e^{j \omega t}$. Since H_{1} is LTI, the other signals are of the form $w: t \mapsto W(\omega) e^{j \omega t}$ and $y: \mapsto Y(\omega) e^{j \omega t}$. Moreover,

$$
W(\omega)=X(\omega)+Y(\omega), \quad Y(\omega)=H_{1}(\omega) W(\omega),
$$

from which we obtain the desired frequency response,

$$
H_{4}(\omega)=\frac{Y(\omega)}{X(\omega)}=\frac{H_{1}(\omega)}{1-H_{1}(\omega)}
$$

(b) Part (b) of Figure 1.

Ans Rewrite part (b) of the figure as (c), and introduce the signal names u, v. Take as input the signal $x: t \mapsto X(\omega) e^{j \omega t}$. Since H_{1}, H_{2}, H_{3} are all LTI, u, v, y are all exponential,

$$
u: t \mapsto U(\omega) e^{j \omega t}, \quad v: t \mapsto V(\omega) e^{j \omega t}, \quad y: t \mapsto Y(\omega) e^{j \omega t} .
$$

From the previous part we know $V(\omega)=H_{4}(\omega) U(\omega)$. And then, following the same argument as in the previous part,

$$
\frac{Y(\omega)}{X(\omega)}=\frac{H_{4}(\omega) H_{3}(\omega)}{1-H_{2}(\omega) H_{3}(\omega) H_{4}(\omega)} .
$$

And substituting for H_{4} from the previous part,

$$
\frac{Y(\omega)}{X(\omega)}=\frac{H_{4}(\omega) H_{3}(\omega)}{1-H_{2}(\omega) H_{3}(\omega) H_{4}(\omega)}=\frac{H_{1}(\omega) H_{3}(\omega)}{1-H_{1}(\omega)-H_{1}(\omega) H_{2}(\omega) H_{3}(\omega)}
$$

2. 20 points Let f, g, x, y be as in Figure 2.
(a) Determine $f * g$.

Ans Since f is periodic with period $2, f * g$ is periodic with period 2 and it can be obtained as the periodic repetition of $f_{1} * g$ where $f_{1}(t)=f(t), 0 \leq t \leq 2$ and $f_{1}(t)=0$, otherwise. f_{1} and $f_{1} * g$ are shown graphically in the figure.
(b) Determine $x * y$.

Ans Arguing in the same way, $x * y$ is the periodic repetition of $x_{1} * y$, with period 1.5, and we can use the calculation of $f_{1} * g$ as shown in the figure.
3. 20 points Give an example of a discrete-time system H that is:
(a) Not linear;

Ans Take $H(x)(n)=(x(n))^{2}$. This is not linear since $H(2 x)=4 H(x) \neq 2 H(x)$.

Figure 1: System for Problem 1

Figure 2: Signals for Problem 2
(b) Linear and time-varying;

Ans Take $H(x)(n)=x(2 n)$. This is not time-invariant, since $H\left(D_{1} x\right)(n)=$ $x(2 n-1) \neq D_{1}(H x)(n)=H(x)(n-1)=x(2 n-2)$.
(c) LTI but not causal;

Ans Take $H(x)(n)=x(n+1)$. This is not causal, because its impulse response is $n \mapsto \delta(n+1)$, so that $h(-1)=1 \neq 0$.
(d) LTI, causal, but not memoryless.

Ans Take $H(x)(n)=x(n-1)$. This is not memoryless, because the output at n depends on the input at $n-1$.
4. 20 points Suppose a periodic signal $x:$ Reals \rightarrow Comps with fundamental frequency ω_{x} has the Fourier series representation:
$\forall t, \quad x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{x} t}$.
(a) Let y be the signal $\forall t, y(t)=x(t-\tau)$, where τ is a fixed number. What is the Fourier series representation of y ?
Ans We have $\forall t$,

$$
\begin{aligned}
y(t)=x(t-\tau) & =\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{x}(t-\tau)}=\sum_{k=-\infty}^{\infty} X_{k} e^{-j \omega_{x} \tau} e^{j k \omega_{x} t} \\
& =\sum_{k=-\infty}^{\infty} Y_{k} e^{j k \omega_{y} t},
\end{aligned}
$$

where

$$
Y_{k}=X_{k} e^{-j \omega_{x} \tau} \text { and } \omega_{y}=\omega_{x} .
$$

(b) Let z be the signal $\forall t, z(t)=x(2 t)$. What is the fundamental frequency ω_{z} of z in terms of ω_{x} ? What is the Fourier series representation of z ?
Ans We have $\forall t$,

$$
\begin{aligned}
& z(t)=x(2 t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k 2 \omega_{x} t} \\
& \sum_{k=-\infty}^{\infty} Z_{k} e^{j k \omega_{z} t}
\end{aligned}
$$

where

$$
\omega_{z}=2 \omega_{x} \text { and } Z_{k}=X_{k}
$$

(c) Let w be the signal $\forall t, w(t)=z(-t)$. What is the Fourier series representation of w ?

Ans We have $\forall t$,

$$
\begin{aligned}
w(t)=z(-t) & =\sum_{k=-\infty}^{\infty} Z_{k} e^{-j k \omega_{z} t} \\
& =\sum_{k=-\infty}^{\infty} W_{k} e^{j k \omega_{w} t}
\end{aligned}
$$

where

$$
\omega_{w}=\omega_{z}=2 \omega_{x} \text { and } W_{k}=Z_{-k}=X_{-k} .
$$

