

Figure 1: Periodic signal for problem 1

EECS 120. Final Exam Solution, May 19, 2000. 12.30-3.30 pm.

1. 20 points Consider the periodic signal x of Figure 1 .
(a) Evaluate the coefficients X_{k} in the Fourier series

$$
\forall t, \quad x(t)=\sum_{k=-\infty}^{\infty} X_{k} e^{j k \omega_{0} t}
$$

(b) What is ω_{0} ? State the units.
(c) Evaluate

$$
\sum_{k=-\infty}^{\infty}\left|X_{k}\right|^{2}
$$

Answer to 1

(a) 7 We have for $-\infty<k<\infty$,

$$
X_{k}=\frac{1}{T} \int_{0}^{\Delta} 1 . e^{-j k \frac{2 \pi}{T} t} d t=\frac{1}{T} \frac{T}{-j 2 \pi k}\left[e^{-j k \frac{2 \pi}{T} \Delta}-1\right]=\frac{j}{2 \pi k}\left[e^{-j k \frac{2 \pi}{T} \Delta}-1\right]
$$

(b) $\mathbf{3} \omega_{0}=\frac{2 \pi}{T} \mathrm{rad} / \mathrm{sec}$.
(c) 10 By Parseval's theorem

$$
\sum_{-\infty}^{\infty}\left|X_{k}\right|^{2}=\frac{1}{T} \int_{0}^{T}|x(t)|^{2} d t=\frac{\Delta}{T}
$$

Figure 2: Signal and low pass filter for problem 2
2. 20 points Consider the signal x with Fourier Transform given in the left of Figure 2.
(a) What is the bandwidth of this signal in rad/sec and in Hz . What is the lowest sampling frequency in Hz that allows exact reconstruction of the signal from its samples.
(b) Suppose x is sampled at 7 Hz and the sampled signal x_{s} is the product of x and $f_{s}(t)=\sum_{n=-\infty}^{\infty} \delta(t-n / 7)$. Sketch the Fourier Transform X_{s} of x_{s}.
(c) Let x_{a} be the output when x_{s} is passed through the low pass filter shown on the right in the figure. Sketch the Fourier transform X_{a} of x_{a} and determine the squared error $\int_{-\infty}^{\infty}\left|x(t)-x_{a}(t)\right|^{2} d t$, without a lot of computation.

Answer to 2

(a)5 The bandwidth is $8 \pi \mathrm{rad} / \mathrm{sec}$ or 4 Hz . So the lowest sampling frequency is 8 Hz .
(b) The sampled signal is

$$
x_{s}(t)=x(t) f_{s}(t)=x(t) \sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{7}\right),
$$

So its Fourier transform is

$$
5 X_{s}(\omega)=\frac{1}{1 / 7} \sum_{n=-\infty}^{\infty} X(\omega-14 n \pi) \equiv 7 .
$$

(c) 2 Clearly, $X_{a}(\omega)=1$, for $|\omega| \leq 7 \pi$, and equal to 0 , otherwise. By Parseval's theorem, and the sketch of $X-X_{a}$ above,

$$
\begin{aligned}
\mathbf{4} \int_{-\infty}^{\infty}\left|x(t)-x_{a}(t)\right|^{2} d t & \left.=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|X(\omega)-X_{a}(\omega)\right|^{2} \right\rvert\, d \omega \\
\mathbf{4} & =\frac{1}{2 \pi} \times 4 \times \text { shaded area }=\frac{1}{6} .
\end{aligned}
$$

Figure 3: Demodulation scheme in Problem 3
3. 20 points Consider a NB signal of the form

$$
x(t)=\cos \left(\omega_{c} t+\theta(t)\right) .
$$

Assume $X(\omega)$ is zero except where $\left||\omega|-\omega_{c}\right|<2 \pi W \mid$ and $W \ll \omega_{c}$. Find y, z in the arrangement of Figure 3.
(Hint. In $H(\omega)$ you may use $|\omega|=(j \omega)(-j \operatorname{sgn} \omega)$, where $\operatorname{sgn}(w)$ is the function equal to +1 if $w \geq 0$ and -1 if $w<0$.)
Answer to 3 Write $H(\omega)=a+b|\omega|=a+b j \omega(-j \operatorname{sgn}(\omega))$, so

$$
\begin{aligned}
Y(\omega)=H(\omega) X(\omega) & =a X(\omega)+b j \omega(-j \operatorname{sgn}(\omega)) X(\omega) \\
\mathbf{2} & =a X(\omega)+b j \omega \hat{X}(\omega),
\end{aligned}
$$

and then, by time diffentiation property,

$$
3 y(t)=a x(t)+b \frac{d}{d t} \hat{x}(t) \text {. }
$$

Now $x(t)=\operatorname{Re}\left\{e^{j\left(\omega_{c} t+\theta(t)\right)}\right\}$. The spectrum of $e^{j\left(\omega_{c} t+\theta(t)\right)}$ is zero for negative frequencies, so

$$
3 \hat{x}(t)=\operatorname{Im}\left\{e^{j\left(\omega_{c} t+\theta(t)\right)}\right\}=\sin \left(\omega_{c} t+\theta(t)\right),
$$

hence

$$
2 \frac{d}{d t} \hat{x}(t)=\left(\omega_{c}+\dot{\theta}(t)\right) \cos \left(\omega_{c} t+\theta(t)\right),
$$

so

$$
5 y(t)=\left\{a+b\left(\omega_{c}+\dot{\theta}(t)\right)\right\} \cos \left(\omega_{c} t+\theta(t)\right),
$$

and the envelope is

$$
5 z(t)=a+b\left(\omega_{c}+\dot{\theta}(t)\right) .
$$

4. 20 points The step response of an LTI system is given by

$$
s(t)= \begin{cases}0, & t \leq 0 \\ 1-0.5 e^{-t}+0.5 e^{-2 t}, & t>0\end{cases}
$$

(a) Find its impulse response, transfer function, and frequency response.
(b) Find its steady state response to the input

$$
\forall t, \quad x(t)=\cos (\omega t) u(t) .
$$

(c) Find its response to the input

$$
\forall t, \quad x(t)=\cos (\omega t) .
$$

Answer to 4

(a) The Laplace transform of the step response is

$$
Y(s)=\frac{1}{s}-\frac{0.5}{s+1}+\frac{0.5}{s+2}=\frac{s^{2}+2.5 s+2}{s(s+1)(s+2)}
$$

so the transfer function is

$$
3 H(s)=\frac{Y(s)}{1 / s}=\frac{s^{2}+2.5 s+2}{(s+1)(s+2)}=1+\frac{0.5}{s+1}-\frac{1}{s+2},
$$

the impulse response is its inverse Laplace transform,

$$
\mathbf{5} h(t)=\delta(t)+\left[0.5 e^{-t}-e^{-2 t}\right] u(t),
$$

and the frequency response (which exists because the system is stable) is

$$
5 H(j \omega)=\left.H(s)\right|_{s=j \omega}=\frac{\left(2-\omega^{2}\right)+2.5 j \omega}{\left(2-\omega^{2}\right)+3 j \omega} .
$$

(b) $\mathbf{3}$ The steady state response is

$$
|H(j \omega)| \cos (\omega t+\angle H(j \omega)) .
$$

(c)4 The response is the same as the steady state response.
5. 20 points Consider the linear vector differential equation system:

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+b u(t) \\
y(t) & =c^{\prime} x(t)+d u(t)
\end{aligned}
$$

where $x=\left(x_{1}, x_{2}\right)^{\prime} \in R^{2}$ and

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad c^{\prime}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \quad d=0
$$

(a) Find the transfer function $H(s)=Y(s) / U(s)$.
(b) The Laplace transform of the matrix-valued function $e^{t A} u(t)$ is the matrix $[s I-$ $A]^{-1}$. Calculate this matrix and then take its inverse Laplace transform to calculate $e^{t A}$.
(c) Suppose the initial state is $x=(1,1)$. Find the zero-input response for this initial state.
(d) Find the zero-state step response.
(e) Find the response when the initial state is $(1,1)$ and the input is a unit step.

Answer to 5 We know that

$$
3 H(s)=c^{\prime}[s I-A]^{-1} b+d,
$$

and

$$
3[s I-A]^{1}=\left[\begin{array}{ll}
s-1 & -1 \\
0 & s-1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
(s-1)^{-1} & (s-1)^{-2} \\
0 & (s-1)^{-1}
\end{array}\right]
$$

(a) Substituting from this into H gives

$$
3 H(s)=\frac{1}{(s-1)^{2}}
$$

(b) Taking inverse Laplace transform of $[s I-A]^{-1}$ gives

$$
\mathbf{3} e^{t A} u(t)=\left[\begin{array}{cc}
e^{t} & t e^{t} \\
0 & e^{t}
\end{array}\right] u(t)
$$

(c) The zero-input response due to the initial state $x_{0}=(1,1)^{\prime}$ is

$$
\mathbf{3} c^{\prime} e^{t A} x_{0}=\left[e^{t}+t e^{t}\right] u(t)
$$

(d) The Laplace transform of the zero-state step response is

$$
Y(s)=H(s) U(s)=\frac{1}{s(s-1)^{2}}=\frac{1}{s}-\frac{1}{s-1}+\frac{1}{(s+1)^{2}}
$$

and taking Laplace transforms gives

$$
\mathbf{3} y(t)=\left[1-e^{t}+t e^{t}\right] u(t) .
$$

(e) The output is the sum of the last two, i.e.
$2 y(t)=\left[1+2 t e^{t}\right] u(t)$.

Figure 4: Root locus in Problem 6
6. 20 points The open loop plant has transfer function $H(s)=1 /\left(s^{2}+2 s+1\right)$. Place the plant in a closed loop using a PI controller $K_{1}+K_{2} / s$.
(a) Take $K_{2}=0$, and plot the root locus as K_{1} varies. For what values of $K_{1} \geq 0$ is the closed loop system stable? What is the steady state error to a step input as a function of K_{1} ?
(b) Take $K_{1}=0$, and use the Routh-Hurwitz criterion to find the values of $K_{2}>0$ such that the closed loop system is stable. What is the steady-state error for step inputs as a function of K_{2} ?

Answer to 6

(a) 5 The root locus is shown in Figure 4.

2 The closed loop system is stable for all $K_{1}>0$. The steady-state value for step inputs is

$$
3 \lim _{s \rightarrow 0} \frac{K_{1} H(s)}{1+K_{1} H(s)}=\frac{K_{1}}{1+K_{1}}
$$

so the steady-state error is $1-K_{1} /\left(1+K_{1}\right)=1 /\left(1+K_{1}\right)$.
(b) The closed loop poles are the roots of

$$
\mathbf{2} s\left(s^{2}+2 s+1\right)+K_{2}=s^{3}+2 s^{2}+s+K_{2}=0,
$$

and for this polynomial the (3) Routh-Hurwitz table is given in the Figure. From the table it follows that the close-loop system is stable for (2) $0<K_{2}<2$.

Finally, the steady state value to a unit step is

$$
\mathbf{3} \lim _{s \rightarrow 0} \frac{K_{2} H(s) / s}{1+K_{2} H(s) / s}=1,
$$

so the steady-state error is (3) zero for all values of $K_{2}>0$.

Figure 5: Direct form realization for problem 7
7. 20 points Consider the difference equation

$$
y(k)+2 y(k-1)+y(k-2)=x(k)+2 x(k-1), k=0,1,2, \ldots
$$

(a) Find the transfer function $H(z)$. Is the system BIBO stable?
(b) Find the impulse response, assuming zero initial conditions.
(c) Obtain a direct form realization of the difference equation using only two delay elements.

Answer to 7

(a) The transfer function is

$$
2 H(z)=\frac{1+2 z^{-1}}{1+2 z^{-1}+z^{-2}}=\frac{1+2 z^{-1}}{\left(1+z^{-1}\right)^{2}}=\frac{1}{\left(1+z^{-1}\right)^{2}}+\frac{2 z^{-1}}{\left(1+z^{-1}\right)^{2}} .
$$

Since there are two poles at -1 , the system is (3) not BIBO stable.
(b) The impulse response is simply the inverse z transform of H,

$$
\begin{aligned}
5 h(n) & =(n+1)(-1)^{n} u(n)+2 n(-1)^{n-1} u(n-1) \\
& =2(-1)^{n} u(n)-(n+1)(-1)^{n} u(n) \\
& =(-1)^{n}(1-n) u(n) .
\end{aligned}
$$

(c)10 The realization is given in Figure 5.

Figure 6: System for problem 8

8. 20 points

Consider the analog transfer function $H(s)=1 /\left(s^{2}+5 s+6\right)$.
(a) Consider the scheme of Figure 6. Suppose $x(t)=u(t)$. Find $H_{1}(z)$ so that $e(n T) \equiv 0$, for all n. This is the step-invariant filter.
(b) Suppose $x(t)=\delta(t)$. Find $H_{1}(z)$ so that $e(n T) \equiv 0$. In this case assume that $x(n T)$ is the Kronecker delta. This is the impulse-invariant filter.

Answer for 8

(a) Since $x(n T) \equiv 1$,

$$
X(z)=\left[1-z^{-1}\right]^{-1} .
$$

Now

$$
3 Y_{a}(s)=\frac{1}{s\left(s^{2}+5 s+6\right)}=\frac{1 / 6}{s}+\frac{-1 / 2}{s+2}+\frac{1 / 3}{s+3},
$$

so

$$
y_{a}(t)=\left[\frac{1}{6}-\frac{1}{2} e^{-2 t}+\frac{1}{3} e^{-3 t}\right] u(t),
$$

from which

$$
3 y_{a}(n T)=\left[\frac{1}{6}-\frac{1}{2} e^{-2 n T}+\frac{1}{3} e^{-3 n T}\right] u(n),
$$

and

$$
3 Y_{a}(z)=\frac{1}{6} \frac{1}{1-z^{-1}}-\frac{1}{2} \frac{1}{1-e^{-2 T} z^{-1}}+\frac{1}{3} \frac{1}{1-e^{-3 T} z^{-1}},
$$

so that

$$
3 H_{1}(z)=\frac{Y_{a}(z)}{X(z)}=\frac{1}{6}-\frac{1}{2} \frac{1-z^{-1}}{1-e^{-2 T} z^{-1}}+\frac{1}{3} \frac{1-z^{-1}}{1-e^{-3 T} z^{-1}}
$$

(b) In this case $X(z)=1$,

$$
2 Y_{a}(s)=\frac{1}{s^{2}+5 s+6}=\frac{1}{s+2}-\frac{1}{s+3},
$$

so

$$
y_{a}(t)=\left[e^{-2 t}-e^{-3 t}\right] u(t),
$$

from which

$$
\begin{aligned}
& 2 y_{a}(n T)=\left[e^{-2 n T}-e^{-3 n T}\right] u(n), \\
& 2 Y_{a}(z)=\frac{1}{1-e^{-2 T} z^{-1}}-\frac{1}{1-e^{-3 T} z^{-1}},
\end{aligned}
$$

so that

$$
2 H_{1}(z)=Y_{a}(z)=\frac{1}{1-e^{-2 T} z^{-1}}-\frac{1}{1-e^{-3 T} z^{-1}} .
$$

