EE120: Fall 99 --Midterm2 Prof. J.M. Kahn

Problem \#1

(25pts.) Consider a DT LTI system having input $\mathrm{x}[\mathrm{n}]$, impulse response $\mathrm{h}[\mathrm{n}]$ and output $\mathrm{y}[\mathrm{n}]$. The system is composed paralled interconnection of N DT LTI systems having impulse responses $h(s u b k)[n], k=0, \ldots, N-1$.

$$
\text { For any } k, h_{k}[n] \text { is related to } h_{0}[n] \text { by } h_{k}[n]=e^{j 2 \pi n k / N_{h}} h_{0}[n] \text {. }
$$

For any $k, h($ sub $k)[n]$ is related to $h($ sub 0$)[n]$ by $h($ sub $k)[n]=e^{\wedge}\left(j^{*} 2 p i * n * k / N\right) * h($ sub 0$)[n]$.
a) (5 pts.) Let $\mathrm{Hk}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega) $)$ and $\operatorname{Ho}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega) $)$ denote the DTFTs of $\mathrm{h}(\mathrm{sub} \mathrm{k})[\mathrm{n}]$ and $\mathrm{h}($ sub 0$)[\mathrm{n}]$, respectively. an expression for $\mathrm{Hk}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega $)$) in terms of $\operatorname{Ho}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega) $)$.

In parts (b) and (c), let $\mathrm{h}($ sub 0$)[\mathrm{n}]$ be an ideal lowpass filter with the frequency response $\operatorname{Ho}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega)) as shown below for the range -pi $<=$ omega $<$ pi. The cutoff frequency is OMEGAc, where $0<$ OMEGAc $<$ pi.

(b) (10 pts.) Sketch H(sub 1) ($\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.$ omega) $)$ and $\mathrm{H}($ sub $(\mathrm{N}-1))\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*}\right.\right.$ omega) $)$ for $-\mathrm{pi}<=$ omega $<$ pi, labeling the vertical horizontal axes of the plots.
course, exam \#, semester/year (e.g., CS 150, Midterm \#2, Fall 1994)
(c) (10 pts.) Determine, in terms of N, the value of OMEGAc, $0<$ OMEGAc $<$ pi, such that $y[n]=x[n]$.

Problem \#2

(40 pts.) Consider a system using sampling and ideal bandlimited reconstruction.

Let $x(t)$ have the FT shown here.

$14 \quad-6$
(a) (5 pts.) What is the largest T such that $x($ sub $r)(t)=x(t)$?

In parts (b), (c) and (c), assume that $T=1 / 7$.
(b) (10 pts.) Sketch the DTFT of the sampled signal, $\mathrm{X}\left(\mathrm{e}^{\wedge}\left(\mathrm{j}^{*} \mathrm{w}^{*} \mathrm{t}\right)\right.$. Label the vertical and horizontal axes of your plot.
(c) (10 pts.) Sketch the FT of the reconstructed signal, $\mathrm{Xr}(\mathrm{jw})$. Label the vertical and horizontal axes of your plot.
(d) (15 pts.) Use Parseval's identity to calculate the squared error $E=\int_{-\infty}^{\infty}\left|x(t)-x_{r}(t)\right|^{2} d t$.

Problem \#3

(35 pts.) A cascade of two LTI systems is shown below.
course, exam \#, semester/year (e.g., CS 150, Midterm \#2, Fall 1994)

The first LTI system has the frequency response:

$$
H_{1}(j \omega)=\left\{\begin{array}{cc}
e^{-j 10 \omega} & \mid \omega_{i} \leq 10 \pi \\
0 & ; \omega \mid>10 \pi
\end{array}\right.
$$

(a) (5 pts .) Find an expression for $\mathrm{H}(\mathrm{jw})$, the frequency response of the overall system enclosed in the dashed box.
(b) (10 pts.) Sketch $|\mathrm{H}(\mathrm{jw})|$ and $\arg \{\mathrm{H}(\mathrm{jw})\}$, labeling the vertical and horizontal axes. (c) (15 pts .) Find an expression $\mathrm{h}(\mathrm{t})$, the impulse response of the overall system enclosed in the dashed box.
(d) $(5 \mathrm{pts}$.) Let the input be $\mathrm{x}(\mathrm{t})=\sin (\mathrm{pi} / 20 * \mathrm{t})$. Find an expression for the output $\mathrm{y}(\mathrm{t})$.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley
 If you have any questions about these online exams please contactexamfile@hkn.eecs.berkeley.edu.

