EE120 Fall 97

Midterm \#1 Solutions Professor J.M. Kahn

Problem \#1 (35 pts)

A LTI system with input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$ is implemented as shown.

(a) (10 pts.) Give an expression for the impulse responseh(t).

$$
h(t)=-\delta(t)+\delta(t-1)
$$

(b) (10 pts.) Give an expression for the frequency response $\mathrm{H}(\mathrm{w})$.

$$
H(\omega)=e^{-j \omega}-1
$$

(c) (10 pts.) Find a purely real expression for $|\mathrm{H}(\mathrm{w})|$. Sketch $|\mathrm{H}(\mathrm{w})|$, labeling the vertical and horizontal axes of your plot.

$$
\begin{aligned}
|H(\omega)|=\left[\left(-1+e^{-j \omega}\right)\left(-1+e^{j \omega}\right)\right]^{1 / 2} & =\left[1+1-e^{-j \omega}-e^{j \omega}\right]^{/ / 2} \\
& =[2(1-c, \omega)]^{1 / 2}
\end{aligned}
$$

(d) (5 pts.) Suppose the input is $\mathrm{x}(\mathrm{t})=\cos \left(\mathrm{w}_{\mathrm{o}} \mathrm{t}\right)$. For what values of w_{o} is the output zero, i.e., $\mathrm{y}(\mathrm{t})=0$?

$$
\omega_{0}=0,2 \pi, 4 \pi, \ldots
$$

Problem \#2 (50 pts.)

A system with input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$ is described by the differential equation:

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=2 \frac{d x}{d t}+x
$$

(a) (10 pts.) Find an expression for the frequency response $\mathrm{H}(\mathrm{w})$.

$$
H(\omega)=\frac{1+2 j \omega}{-\omega^{2}+2 j \omega+1}=\frac{1+2 j \omega}{(1+j \omega)^{2}}
$$

(b) (10 pts.) Find a purely real expression for $\mathrm{lH}(\mathrm{w}) \mathrm{I}$, and sketch $\mathrm{IH}(\mathrm{w}) \mathrm{l}$, labeling the horizontal and vertical axes of your sketch. Hint: just evaluate $|\mathrm{H}(\mathrm{w})|$ for a few values of $w, ~ e . g ., ~ w=0,1,2$, infinity.

$$
|H(\omega)|=\frac{\sqrt{1+4 \omega^{2}}}{1+\omega^{2}}
$$

Consider the periodic signal $\mathrm{x}(\mathrm{t})$ shown below.

(c) (15 pts.) State the period T_{O} and the fundamental frequency w_{o} of the signal $\mathrm{x}(\mathrm{t})$. Give an exponential Fourier series representation of $\mathrm{x}(\mathrm{t})$.

$$
\begin{aligned}
& T_{0}=10 \quad \omega_{0}=\frac{2 \pi}{10}=\frac{\pi}{5} \\
& x(t)=1+z(t) \\
& z(t) \\
& \text { Cases) } \\
& z(t)=\sum_{n=-\infty}^{\infty} z_{n} e^{j \frac{n \pi}{5}} \quad z_{n}= \begin{cases}0 & n \text { even } \\
-\frac{4}{n^{2} \pi^{2}} & n \text { odd }\end{cases} \\
& x(t)=\sum_{n=-\infty}^{\infty} X_{n} e^{\frac{i n t}{5}} \quad X_{n}= \begin{cases}1 & n=0 \\
0 & n \neq 0, n \text { even } \\
-\frac{4}{\pi^{2} n^{2}} & n \text { odd. }\end{cases}
\end{aligned}
$$

(d) (10 pts.) The signal $x(t)$ shown above is input to the system. Give an exponential Fourier series representation of the output $y(t)$.

$$
\begin{aligned}
& y(t)=\sum_{n=1}^{\infty} y_{n} e^{j \frac{n \pi}{5}} \\
& y_{n}=X_{n} \cdot H\left(\frac{n \omega}{5}\right)=X_{n}\left[\frac{\frac{2 j n \pi}{5}+1}{\left(\frac{j \pi \pi}{5}\right)^{2}+\frac{j n \pi}{5}+1}\right] \\
& \text { where } \quad X_{n} \text { ore given in part (c). }
\end{aligned}
$$

(e) (5 pts.) Circle the drawing that you think best depicts the $y(t)$ obtained in part (d).

Circle the second drawing because it's the only one having a non-zero dec. level. We know that $\mathrm{x}_{\mathrm{o}}!=0$ and $\mathrm{H}(0)!=0$.

Problem \#3 (15 pts.)

Consider a signal $y(t)=r(t) \otimes \Pi(t)$, where $r(t)$ is the unit ramp function and $\Pi(t)$ is the unit pulse function.
(a) (10 pts.) Find an expression for $\mathrm{y}(\mathrm{t})$.

$$
\begin{aligned}
y(t) & =r(t) \otimes\left[u\left(t+\frac{L}{2}\right)-u\left(t-\frac{1}{2}\right)\right] \\
& =p\left(t+\frac{L}{2}\right)-p\left(t \cdot \frac{L}{2}\right) \\
p(t) & =\frac{1}{2} t^{2} u(t)
\end{aligned}
$$

(b) (5 pts.) Sketch $\mathrm{y}(\mathrm{t})$, labeling the vertical and horizontal axes of the plot. You may find it helpful to evaluate $\mathrm{y}(\mathrm{t}), \mathrm{t}>=1 / 2$

$$
\text { For } \begin{aligned}
t \geq \frac{1}{2}, y(t) & =\left[\frac{1}{2}\left(t+\frac{1}{2}\right)^{2}-\frac{1}{2}\left(t-\frac{1}{2}\right)^{2}\right] \\
& =\frac{1}{2}\left[\left(t^{2}+t+\frac{1}{4}\right)-\left(t^{2}-t+\frac{1}{4}\right)\right]=t
\end{aligned}
$$

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
 University of California at Berkeley If you have any questions about these online exams please contactexamfile@hkn.eecs.berkeley.edu.

