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University of California at Berkeley
Department of Electrical Engineering and Computer Sciences

Professor J.M. Kahn, EECS 120, Fall, 1996
Final Examination, Wednesday, December 18, 1996, 5-8 pm

NAME:

1. The exam is open book and open notes.

2. Do all work in the space provided. If you need more room, use the back of previous p

3. Indicate your answer clearly by circling it or drawing a box around it.

Problem 1 (35 pts.) Consider the four signals , which have Fourier trans
forms , respectively.

(a) (10 pts.) Use an “X” to indicate any symmetry property that pertains.
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(b) (10 pts.) Without calculating explicitly, use Fourier transform properties to expres
in terms of . More than one correct answer is possible

some cases.

(c) (15 pts.) Give an explicit expression forX(ω).
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Problem 2 (15 pts.) For each discrete-time system having inputx[n] and outputy[n], use an “X” to
indicate any property that pertains.

Problem 3 (25 pts.) Consider the following continuous-time system having inputx(t) and output
y(t). The overall system has impulse responseh(t) and transfer functionH(s).

(a) (10 pts.) Find an expression forH(s).
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(b) (5 pts.) Find the poles and zeros ofH(s). Making reference toH(s), determine for what val-
ues of the system is stable.

(c) (10 pts.) Find an expression forh(t). Making reference toh(t) only, determine for what val-
ues of the system is stable.
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Problem 4 (30 pts.) Consider the following system. is bandlimited to a bandwidth .

(a) (10 pts.) Define , the Fourier transform of . Find an expression fo
, the Fourier transform of , in terms of .
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(b) (10 pts.) Assume . Sketch , labeling the horizontal and vertical axes.

(c) (10 pts.) Find such that if , then .
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Problem 5 (35 pts.) Consider the following discrete-time system having inputx[n] and outputy[n]:

(a) (10 pts.) Find the transfer functionH(z).

(b) (10 pts.) Using only two delay elements, draw the block diagram of another system with
same transfer function.
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(c) (10 pts.) Find the outputy[n] if the input isx[n] = (1 ⁄ 2)nu[n]. Assume zero initial condi-
tions.

(d) (5 pts.) Find the outputy[n] if the input is one for all time,x[n] = 1.
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Problem 6 (60 pts.) The design of high-gain, d.c.-coupled amplifiers (amplifiers whose passba
includes ) sometimes presents difficulties because small, slow changes in the quiesce
operating points of the transistors can lead to a drift of the output that is indistinguishable from
those due to small desired signals. A possible solution is shown here. The input signal is
limited as shown. A periodic pulse train is used to modulate onto a carrier. A high-ga
bandpass amplifier amplifies the resulting signal. A delayed copy of the pulse train,
modulates the signal back to baseband, and the lowpass filter removes the undesired p
band components.

(a) (10 pts.) Write down the Fourier transforms of and .
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(b) (10 pts.) Write down an expression for in terms of .

(c) (10 pts.) Sketch over the range , labeling the horizontal and vertic
axes.
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(d) (10 pts.) Find an expression for in terms of . You may find it helpful to first
sketch and/or ,but this is optional and no credit will be given for it.

(e) (10 pts.) Find an expression for in terms of .
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(f) (5 pts.) Find an expression for in terms of .

(g) (5 pts.) Specify a value ofτ such that the overall system [with input and output ]
achieves the largest possible positive gain. For this choice ofτ, find an expression for .
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