EE120, Fall 1995 Midterm \#2 Professor J.M. Kahn

Problem \#1

(40 pts.) Consider $\mathrm{x}(\mathrm{t})$, the periodic pulse train shown below.

Problem \#1a

(15 pts.) Give an expression for $\mathrm{X}(\mathrm{w})$, the Fourier transform of $\mathrm{x}(\mathrm{t})$.

Problem \#1b

(5 pts.) Plot X(w).

Problem \#1c

(3 pts.) Consider $\mathrm{y}(\mathrm{t})=$ sinct. Give an expression for $\mathrm{Y}(\mathrm{w})$, its Fourier transform.

Problem \#1d

(2 pts.) Plot $\mathrm{Y}(\mathrm{w})$.

Problem \#1e

$(10$ pts.) We form the signal $\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t}) * \mathrm{y}(\mathrm{t})$. Give an explicit expression for its Fourier transform $\mathrm{Z}(\mathrm{w})$. This expression should not be stated in terms of a convolution integral.

Problem \#3

(35 pts .) Consider the circuit shown, with input current $\mathrm{i}(\mathrm{t})$ and output voltage $\mathrm{v}(\mathrm{t})$.

Problem \#3a

(10 pts.) Give a differential equation relating $i(t)$ and $v(t)$.

For the remainder of the problem, assume $\mathrm{R}=\mathrm{L}=\mathrm{C}=1$, so that the differential equation becomes: $\left(d^{\wedge} 2 \mathrm{v}\right) /(\mathrm{dt} \wedge 2)+(\mathrm{dv}) /(\mathrm{dt})+\mathrm{v}=(\mathrm{di}) /(\mathrm{dt})$.

Problem \#3b

(5 pts .) Find the transfer function $\mathrm{H}(\mathrm{s})$ that relates the input $\mathrm{i}(\mathrm{t})$ and output $\mathrm{v}(\mathrm{t})$.

Problem \#3c

(5 pts .) Plot the poles and zeros of $\mathrm{H}(\mathrm{s})$ on the s-plane. Specify its region of convergence.

Problem \#3d

(5 pts.) Assume that $\mathrm{i}(\mathrm{t})=3$, -infinity $<\mathrm{t}<$ infinity. Find $\mathrm{v}(\mathrm{t})$, -infinty $<\mathrm{t}<$ infinity.

Problem \#3e

(10 pts.) Assume that $v(0-)=1, n u(0-)=-3 / 2$ and $i(t)=u(t), t>=0$. Find $v(t), t>=0$. Hint: You needn't do partial fraction expansion; the transform you need is in the table.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
 University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

