EECS 120 Midterm 1 Wed. Oct. 26, 2016: 1610 - 1800 pm Name:______ SID:_____

For statistical purposes only: Circle courses you have taken EE20 EE16B neither

- Closed book. One 8.5x11 inch page double sided formula sheet. No calculators.
- There are 4 problems worth 100 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	22	
2	25	
3	26	
4	27	
5	27	
TOTAL	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan^{-1}\frac{1}{10} = 5.7^{\circ}$	$\tan^{-1}\frac{1}{5} = 11.3^{\circ}$
$\tan^{-1}\frac{1}{4} = 14^{\circ}$	$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\tan^{-1} 1 = 45^{\circ}$	$\tan^{-1}\sqrt{3} = 60^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 30^\circ = \frac{\sqrt{3}}{2}$
$\cos 45^\circ = \frac{\sqrt{2}}{2}$	$\sin 45^\circ = \frac{\sqrt{2}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10}2 = 6dB$	$\pi \approx 3.14$	
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	$2\pi \approx 6.28$	
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	$\pi/2 \approx 1.57$	
$1/e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi/4 \approx 0.79$	
$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$	
$1/e^3 \approx 0.05$	$1/\sqrt{2} \approx 0.71$	$1/\sqrt{3} \approx 0.58$	

Problem 1 LTI Properties (22 pts)

[16 pts] a. Classify the following systems, with input x(t) or x[n] and output y(t) or y[n]. In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect). Note: $\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2})$

System	Causal	Linear	Time-invariant	BIBO
a. $y(t) = x(t) * \Pi(t)$				
b. $y(t) = x(t) \cdot \left[\sum_{n=-\infty}^{\infty} \delta(t - \frac{n}{2}) * \Pi(t)\right]$				
c. $y[n] = x[n] \cdot y[n-2] + u[n-2]$				
d. $y(t) = \int_{-1}^{1} x(\tau) \Pi(t-\tau) d\tau$				

[6 pts] e. An LTI system has input x(t) and impulse response h(t) as shown below:

Sketch the output y(t) on the grid below, noting key times and amplitudes.

Problem 2 Fourier Series (25 pts)

You are given a periodic function x(t) as shown, where the shape is a rectangular pulse of height 1 and width 2, centered at t = 0:

Note that x(t) can be represented by a Fourier Series: $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_o t}$.

[1 pts] a. What is the fundamental frequency $\omega_o =$ _____

[8 pts] b. Find $a_k =$ _____

Given a new signal y(t) as shown:

Periodic function y(t) can be represented by a Fourier Series: $y(t) = \sum_{k=-\infty}^{\infty} b_k e^{jk\omega_o t}$ [6 pts] d. Find b_k in terms of $a_k =$ ______

Problem 2, continued.

[5 pts] e. If
$$y(t) = x(t) * h(t)$$
, find $h(t) =:$ ______

The signal x(t) is passed through an LTI filter g(t) with impulse response:

$$g(t) = \frac{\pi}{3}e^{\frac{-\pi}{3}t}u(t)$$

such that z(t) = x(t) * g(t), where z(t) is also periodic and

$$z(t) = \sum_{k=-\infty}^{\infty} z_k e^{jk\omega_o t},$$

[8 pts] f. Find z_k in terms of $a_k =$ _____

[2 pts] g. What is the total time average power in x(t)?

[5 pts] h. What is the percentage of the total power in x(t) which is not at DC or the fundamental frequency?

percent = _____

Problem 3. Fourier Transform (26 pts)

For each part below, consider the following system:

Where $x(t) = \Pi(25t)\cos(300\pi t), \quad w(t) = \cos(250\pi t), \quad h(t) = \frac{2\sin(100\pi t)}{t}$

(Recall that $\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}).)$

On the next page, sketch $Re\{X(j\omega)\}, Re\{Z(j\omega)\}, Re\{Y(j\omega)\}\$ labelling height/area, center frequencies, and key zero crossings for $-500\pi \leq \omega \leq 500\pi$:

Problem 3, continued.

Problem 4. DTFT (27 points)

[5 pts] a. Given a discrete time signal $x[n] = \cos(\omega_o n) = \frac{1}{2}\cos(\omega_1 n)$,

find the DTFT $X(e^{j\Omega}) =$ _____

[5 pts] b. Sketch $X(e^{j\Omega})$:

[5 pts] c. A causal LTI system with input x[n] has output y[n]. Let y[n] have DTFT $Y(e^{j\Omega})$. Then $Y(e^{j\Omega}) = X(e^{j\Omega})H(e^{j\Omega})$. Find and sketch $H(e^{j\Omega})$ such that $y[n] = \cos(\omega_o n)$:

[5 pts] e. Given the difference equation for the LTI causal system with input u[n], and output y[n]:

$$y[n] = u[n-2] + \frac{3\sqrt{3}}{4}y[n-1] + \frac{9}{16}y[n-2]$$

For the minimal block diagram below, specify

 $b_o = _$ $b_1 = _$ $b_2 = _$ $a_1 = _$ $a_2 = _$

Problem 5. Sampling and Discrete Fourier Transform (30 pts)

Consider the system below, where $x(t) = \cos(\frac{3\pi}{2}t)$. Let $T_s = 0.5$ sec, $T_o = 8$ sec, $w(t) = \Pi(t/4)$. Sketches should label peak magnitudes, and frequency of zero crossing(s) should match given scale.

(All time signals are real and even, hence all spectra are also real and even.) Note $\Pi(t) = u(t+0.5) - u(t-0.5)$.

Note that the window has spectrum $W(j\omega) = \frac{2\sin 2\omega}{\omega}$.

The window function w(t), windowed cosine $x_w(t)$ and $W(j\omega)$ are shown for convenience here:

Problem 5. cont.

Problem 5. cont.

A real bandlimited signal x(t) is sampled with N = 100 for 10 seconds, using a rectangular window of width 10 seconds. The DFT of x[n] is calculated using X = np.fft.fft(x). The magnitude and phase of the DFT is shown below.

for samples X[0]...X[31]. Using reasoning as in problem 3iv above, explain the differences between the DFT of x[n] and $X(j\omega)$, the FT of $x(t) = \cos(\omega_o t)$. In particular, consider the effects on $X'(j\omega)$) of the window and time shift.

[1 pt] e. What is the spacing of frequency samples $k = _$ (rad s^{-1})

Assume $x(t) = a_1 \cos(\omega_1 t + \phi_1) + a_2 \cos(\omega_2 t + \phi_2)$. [2 pt] f. From the DFT plot, estimate $\omega_1 = _$ $\omega_1 = _$

[2 pt] g. From the DFT plot, approximately estimate $a_1 = _$ $a_2 = _$