EECS 120
Midterm 1
Wed. Oct. 26, 2016: $1610-1800$ pm
Name: \qquad
SID: \qquad
For statistical purposes only:
Circle courses you have taken EE20 EE16B neither

- Closed book. One 8.5×11 inch page double sided formula sheet. No calculators.
- There are 4 problems worth 100 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	22	
2	25	
3	26	
4	27	
5	27	
TOTAL	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan ^{-1} \frac{1}{10}=5.7^{\circ}$	$\tan ^{-1} \frac{1}{5}=11.3^{\circ}$
$\tan ^{-1} \frac{1}{4}=14^{\circ}$	$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$
$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\tan ^{-1} 1=45^{\circ}$	$\tan ^{-1} \sqrt{3}=60^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 45^{\circ}=\frac{\sqrt{2}}{2}$	$\sin 45^{\circ}=\frac{\sqrt{2}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$	$\pi \approx 3.14$
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$	$2 \pi \approx 6.28$
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$	$\pi / 2 \approx 1.57$
$1 / e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi / 4 \approx 0.79$
$1 / e^{2} \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1 / e^{3} \approx 0.05$	$1 / \sqrt{2} \approx 0.71$	$1 / \sqrt{3} \approx 0.58$

Problem 1 LTI Properties (22 pts)

[16 pts] a. Classify the following systems, with input $x(t)$ or $x[n]$ and output $y(t)$ or $y[n]$. In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect).
Note: $\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)$

System	Causal	Linear	Time-invariant	BIBO
a. $y(t)=x(t) * \Pi(t)$				
b. $y(t)=x(t) \cdot\left[\Sigma_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{2}\right) * \Pi(t)\right]$				
c. $y[n]=x[n] \cdot y[n-2]+u[n-2]$				
d. $y(t)=\int_{-1}^{1} x(\tau) \Pi(t-\tau) d \tau$				

[6 pts] e. An LTI system has input $x(t)$ and impulse response $h(t)$ as shown below:

Sketch the output $y(t)$ on the grid below, noting key times and amplitudes.

Problem 2 Fourier Series (25 pts)

You are given a periodic function $x(t)$ as shown, where the shape is a rectangular pulse of height 1 and width 2 , centered at $t=0$:

Note that $x(t)$ can be represented by a Fourier Series: $x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{o} t}$.
[1 pts] a. What is the fundamental frequency $\omega_{o}=$ \qquad
[8 pts$]$ b. Find $a_{k}=$ \qquad

Given a new signal $y(t)$ as shown:

Periodic function $y(t)$ can be represented by a Fourier Series: $y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{o} t}$ [6 pts] d. Find b_{k} in terms of $a_{k}=$ \qquad

Problem 2, continued.
[5 pts] e. If $y(t)=x(t) * h(t)$, find $h(t)=:$ \qquad

The signal $x(t)$ is passed through an LTI filter $g(t)$ with impulse response:

$$
g(t)=\frac{\pi}{3} e^{\frac{-\pi}{3} t} u(t)
$$

such that $z(t)=x(t) * g(t)$, where $z(t)$ is also periodic and

$$
z(t)=\sum_{k=-\infty}^{\infty} z_{k} e^{j k \omega_{o} t}
$$

[8 pts$] \mathrm{f}$. Find z_{k} in terms of $a_{k}=$ \qquad
[2 pts] g. What is the total time average power in $x(t) ?$ \qquad
[5 pts] h . What is the percentage of the total power in $x(t)$ which is not at DC or the fundamental frequency?
percent $=$ \qquad

Problem 3. Fourier Transform (26 pts)

For each part below, consider the following system:

Where $x(t)=\Pi(25 t) \cos (300 \pi t), \quad w(t)=\cos (250 \pi t), \quad h(t)=\frac{2 \sin (100 \pi t)}{t}$
(Recall that $\left.\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right).\right)$
On the next page, sketch $\operatorname{Re}\{X(j \omega)\}, \operatorname{Re}\{Z(j \omega)\}, \operatorname{Re}\{Y(j \omega)\}$ labelling height/area, center frequencies, and key zero crossings for $-500 \pi \leq \omega \leq 500 \pi$:

Problem 3, continued.
[6 pts] a. $\operatorname{Re}\{X(j \omega)\}$

								0)										
-500π		π		00π		-100				100π			300π				00π		

[10 pts] b. $\operatorname{Re}\{Z(j \omega)\}$

[10 pts] c. $\operatorname{Re}\{Y(j \omega)\}$

Problem 4. DTFT (27 points)

[5 pts] a. Given a discrete time signal $x[n]=\cos \left(\omega_{o} n\right)=\frac{1}{2} \cos \left(\omega_{1} n\right)$,
find the DTFT $X\left(e^{j \Omega}\right)=$ \qquad
[5 pts] b. Sketch $X\left(e^{j \Omega}\right)$:

[5 pts] c. A causal LTI system with input $x[n]$ has output $y[n]$. Let $y[n]$ have DTFT $Y\left(e^{j \Omega}\right)$. Then $Y\left(e^{j \Omega}\right)=X\left(e^{j \Omega}\right) H\left(e^{j \Omega}\right)$. Find and sketch $H\left(e^{j \Omega}\right)$ such that $y[n]=\cos \left(\omega_{o} n\right)$:

[5 pts] d. Find $h[n]$ for the $H\left(e^{j \Omega}\right)$ above.
$h[n]=$ \qquad
[5 pts] e. Given the difference equation for the LTI causal system with input $u[n]$, and output $y[n]$:

$$
y[n]=u[n-2]+\frac{3 \sqrt{3}}{4} y[n-1]+\frac{9}{16} y[n-2]
$$

For the minimal block diagram below, specify
$b_{o}=$ \qquad $b_{1}=$
$b_{2}=$
$a_{1}=$ \qquad $a_{2}=$

Problem 5. Sampling and Discrete Fourier Transform (30 pts)

Consider the system below, where $x(t)=\cos \left(\frac{3 \pi}{2} t\right)$. Let $T_{s}=0.5 \mathrm{sec}, T_{o}=8 \mathrm{sec}$, $w(t)=\Pi(t / 4)$. Sketches should label peak magnitudes, and frequency of zero crossing(s) should match given scale.
(All time signals are real and even, hence all spectra are also real and even.)
Note $\Pi(t)=u(t+0.5)-u(t-0.5)$.
Note that the window has spectrum $W(j \omega)=\frac{2 \sin 2 \omega}{\omega}$.

The window function $w(t)$, windowed cosine $x_{w}(t)$ and $W(j \omega)$ are shown for convenience here:

Problem 5. cont.

[2 pts] a. Sketch $X(j \omega)$, where $X(j \omega)=\mathcal{F}\{x(t)\}$:

[8 pts] b. Sketch $X_{w}(j \omega)$, where $X_{w}(j \omega)=\mathcal{F}\left\{x_{w}(t)\right\}$:

[8 pts] c. Sketch $X_{\delta}(j \omega)$ where $X_{\delta}(j \omega)=\mathcal{F}\left\{x_{\delta}(t)\right\}$:

[8 pts] d. Sketch $\left.X^{\prime}(j \omega)\right\}$ where $X^{\prime}(j \omega)=\mathcal{F}\left\{x^{\prime}(t)\right\}$:

Problem 5. cont.

A real bandlimited signal $x(t)$ is sampled with $N=100$ for 10 seconds, using a rectangular window of width 10 seconds. The DFT of $x[n]$ is calculated using $\mathrm{X}=\mathrm{np} . \mathrm{fft} . \mathrm{fft}(\mathrm{x})$. The magnitude and phase of the DFT is shown below.

for samples $X[0] \ldots X[31]$. Using reasoning as in problem 3iv above, explain the differences between the DFT of $x[n]$ and $X(j \omega)$, the FT of $x(t)=\cos \left(\omega_{o} t\right)$. In particular, consider the effects on $X^{\prime}(j \omega)$) of the window and time shift.
[1 pt] e. What is the spacing of freqency samples $k=$ \qquad $\left(\operatorname{rad} s^{-1}\right)$

Assume $x(t)=a_{1} \cos \left(\omega_{1} t+\phi_{1}\right)+a_{2} \cos \left(\omega_{2} t+\phi_{2}\right)$.
[2 pt] f. From the DFT plot, estimate $\omega_{1}=$ \qquad $\omega_{1}=$ \qquad
[2 pt] g. From the DFT plot, approximately estimate $a_{1}=$ \qquad

$$
a_{2}=
$$

