EECS 120
Midterm 1
Wed. Oct. 15, 2014
1610-1730 pm
Name: \qquad
SID: \qquad

- Closed book. One 8.5×11 inch page one side formula sheet. No calculators.
- There are 4 problems worth 100 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	22	
2	25	
3	26	
4	27	
TOTAL	100	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

Tables for reference:

$\tan ^{-1} \frac{1}{2}=26.6^{\circ}$	$\tan ^{-1} 1=45^{\circ}$
$\tan ^{-1} \frac{1}{3}=18.4^{\circ}$	$\tan ^{-1} \frac{1}{4}=14^{\circ}$
$\tan ^{-1} \sqrt{3}=60^{\circ}$	$\tan ^{-1} \frac{1}{\sqrt{3}}=30^{\circ}$
$\sin 30^{\circ}=\frac{1}{2}$	$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 45^{\circ}=\frac{\sqrt{2}}{2}$	$\sin 45^{\circ}=\frac{\sqrt{2}}{2}$

$20 \log _{10} 1=0 d B$	$20 \log _{10} 2=6 d B$
$20 \log _{10} \sqrt{2}=3 d B$	$20 \log _{10} \frac{1}{2}=-6 d B$
$20 \log _{10} 5=20 d b-6 d B=14 d B$	$20 \log _{10} \sqrt{10}=10 \mathrm{~dB}$
$1 / e \approx 0.37$	$1 / e^{2} \approx 0.14$
$1 / e^{3} \approx 0.05$	$\sqrt{10} \approx 3.16$
$\pi \approx 3.14$	$2 \pi \approx 6.28$
$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1 / \sqrt{2} \approx 0.71$	$1 / \sqrt{3} \approx 0.58$

Problem 1 LTI Properties (22 pts)

[16 pts] a. Classify the following systems, with input $x(t)$ and output $y(t)$. In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect).

System	Causal	Linear	Time-invariant	BIBO
a. $y(t)=x(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t-2 n)$				
b. $y(t)=x(t) * \sum_{n=0}^{\infty} \delta(t-2 n)$				
c. $y(t)=x(t)-\frac{1}{2} \frac{d x(t+1)}{d t}$				
d. $y(t)=\int_{-1}^{1} x(\tau) x(t-\tau) d \tau$				

[6 pts] e. An LTI system has impulse response $h(t)$ as shown below:

Given input $x(t)=u(t+1)$. Sketch the output $y(t)$ on the grid below, noting key times and amplitudes.

Problem 2 Fourier Series (25 pts)

You are given a periodic function $x(t)$ as shown, where the shape is a rectangular pulse of height 1 and width 1 , centered at $t=0$:

Note that $x(t)$ can be represented by a Fourier Series:

$$
x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{o} t}
$$

where $a_{k}=\frac{\sin k \pi / 6}{k \pi}$.
[1 pts] a. What is the fundamental frequency $\omega_{o}=$ \qquad
[2 pts] b . What is the total time average power in $x(t)$? \qquad
[5 pts] c. What is the percentage of the total power in $x(t)$ which is not at DC or the fundamental frequency?
percent $=$ \qquad

Problem 2, continued.
Given a new signal $y(t)$ as shown:

Periodic function $y(t)$ can be represented by a Fourier Series:

$$
y(t)=\sum_{k=-\infty}^{\infty} b_{k} e^{j k \omega_{o} t}
$$

[12 pts] d. Find $b_{k}=$ \qquad
[5 pts] e. If $y(t)=x(t) * h(t)$, find $h(t)=:$ \qquad

Problem 3. Fourier Transform (26 pts)

For each part below, consider the following system:

Where $x(t)=\cos (400 \pi t)+\Pi\left(\frac{t}{4 T_{o}}\right), \quad w(t)=\frac{1}{2 T_{o}} \Pi\left(\frac{t}{2 T_{o}}\right), \quad h(t)=\sum_{n=-\infty}^{\infty} \delta\left(t-\frac{n}{50}\right)$ with $T_{o}=1 / 100 \mathrm{sec}$.
(Recall that $\Pi(t)=u\left(t+\frac{1}{2}\right)-u\left(t-\frac{1}{2}\right)$. .)
On the next page, sketch $\operatorname{Re}\{X(j \omega)\}, \operatorname{Re}\{Z(j \omega)\}, \operatorname{Re}\{Y(j \omega)\}$ labelling height/area, center frequencies, and key zero crossings for $-500 \pi \leq \omega \leq 500 \pi$:

Problem 3, continued.
[6 pts] a. $\operatorname{Re}\{X(j \omega)\}$

								0)										
-500π		π		00π		-100				100π			300π				00π		

[10 pts] b. $\operatorname{Re}\{Z(j \omega)\}$

[10 pts] c. $\operatorname{Re}\{Y(j \omega)\}$

Problem 4. DTFT (27 points)

A causal LTI system with input $x[n]$ and output $y[n]$ is described by the transfer function:

$$
H\left(e^{j \omega}\right)=\frac{j \sin \omega}{\cos \omega}
$$

[5 pts] a. Find the difference equation relating $y[n]$ and $x[n]$, corresponding to $H\left(e^{j \omega}\right)$: $y[n]=$ \qquad
[7 pts] b. Find the impulse response $h[n]$, that is, the time response of the system to input $x[n]=\delta[n]$.
$h[n]=$ \qquad
$[10 \mathrm{pts}]$ c. If $x[n]=2 \cos \left(\frac{\pi n}{3}\right)$ find $y[n] . y[n]=$ \qquad

Problem 4, continued.
$[5 \mathrm{pts}]$ d. Let $z[n]=\cos \left[\frac{\pi n}{4}\right] \cos \left[\frac{\pi n}{2}\right]$. Find the DTFT of $z[n]$. $Z\left(e^{j \omega}\right)=$

