EECS 120 Final Exam Thur. Dec. 18, 2014 0810 - 1100 am

Name:_____ SID:_____

- Closed book. Three single sided 8.5x11 inch pages of formula sheet. No calculators.
- There are 8 problems worth 200 points total. There may be more time efficient methods to solve problems.

Problem	Points	Score
1	26	
2	40	
3	12	
4	20	
5	36	
6	36	
7	30	
TOTAL	200	

In the real world, unethical actions by engineers can cost money, careers, and lives. The penalty for unethical actions on this exam will be a grade of zero and a letter will be written for your file and to the Office of Student Conduct.

$\tan^{-1} 0.1 = 5.7^{\circ}$	$\tan^{-1} 0.2 = 11.3^{\circ}$
$\tan^{-1}\frac{1}{2} = 26.6^{\circ}$	$\tan^{-1} 1 = 45^{\circ}$
$\tan^{-1}\frac{1}{3} = 18.4^{\circ}$	$\tan^{-1}\frac{1}{4} = 14^{\circ}$
$\tan^{-1}\sqrt[6]{3} = 60^{\circ}$	$\tan^{-1}\frac{1}{\sqrt{3}} = 30^{\circ}$
$\sin 30^\circ = \frac{1}{2}$	$\cos 60^\circ = \frac{\sqrt{3}}{2}$
$\cos 45^\circ = \frac{\sqrt{2}}{2}$	$\sin 45^\circ = \frac{\sqrt{2}}{2}$

$20 \log_{10} 1 = 0 dB$	$20\log_{10}2 = 6dB$	$\pi \approx 3.14$
$20\log_{10}\sqrt{2} = 3dB$	$20\log_{10}\frac{1}{2} = -6dB$	$2\pi \approx 6.28$
$20\log_{10} 5 = 20db - 6dB = 14dB$	$20\log_{10}\sqrt{10} = 10 \text{ dB}$	$\pi/2 \approx 1.57$
$1/e \approx 0.37$	$\sqrt{10} \approx 3.164$	$\pi/4 \approx 0.79$
$1/e^2 \approx 0.14$	$\sqrt{2} \approx 1.41$	$\sqrt{3} \approx 1.73$
$1/e^3 \approx 0.05$	$1/\sqrt{2} \approx 0.71$	$1/\sqrt{3} \approx 0.58$

$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	$\sin 2\theta = 2\sin\theta\cos\theta$
$e^{j\theta} = \cos\theta + j\sin\theta$	$\sin^2\theta + \cos^2\theta = 1$

Problem 1 LTI Properties (26 pts)

[24 pts] Classify the following systems, with input x(t) (or x[n]) and output y(t) (or y[n]). In each column, write "yes", "no", or "?" if the property is not decidable with the given information. (+1 for correct, 0 for blank, -0.5 for incorrect). (For 1d, you are given the system is known to be linear and time=invariant.) For 1b and 1d, 2 test input cases are given.

Let
$$\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2})$$

System	Causal	Linear	Time-invariant	BIBO stable
a. $y(t) = 2x(t-1) - 5$				
b. If $x(t) = 0 \to y(t) = 0$.				
If $x(t) = u(t-1) \rightarrow y(t) = tu(t)$.				
c. $y(t) = x(t)[\cos(2\pi t)u(t)]$				
d. If $x(t) = 0 \to y(t) = 0$		YES	YES	
If $x(t) = u(t) \rightarrow y(t) = u(t-1)$				
e. $y(t) = \int_{\tau=-\infty}^{\infty} x(\tau) \Pi(t-\tau) d\tau$				
f. $y(t) = x(t) \cdot [1 - \delta(t + 100)]$				
g. $y[n] = Z^{-1}\{\frac{z^2}{z+1}\} * x[n]$				

Problem 2 Short Answers (40 pts)

Answer each part independently. Note $\Pi(t) = u(t + \frac{1}{2}) - u(t - \frac{1}{2}).$

[4 pts] a. Complete the table with the appropriate type of Fourier transform to use (FS, FT, DTFT, or DFT) on a signal of each type.

	aperiodic in time	periodic in time
continuous time		
discrete time		

[3 pts] b. $X(j\omega) = \cos(\omega/2) + 1$. Find x(t).

x(t) =_____

[4 pts] c. A periodic signal $x(t) = p(t) * \sum_{n=-\infty}^{\infty} \delta(t-2n)$, where $\mathcal{F}\{p(t)\} = P(j\omega) = \cos(\omega/2) + 1$. The fundamental period $\omega_o = \pi$. Find the Fourier series coefficients a_k .

 $a_k =$ _____

[7 pts] d. A periodic signal x(t) has period 4 seconds and Fourier Series coefficients $a_k = \frac{\sin(k\pi/4)}{k\pi}$. Find the time average power $\frac{1}{T} \int_T x^2(t) dt$.

time average power = _____

[9 pts] e. Initial and final value.

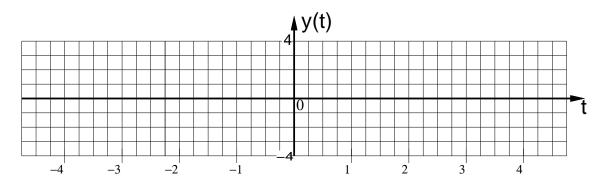
i. Given $X(s) = \frac{s+3}{s^2+3s+2}$. Find $x(0^+) =$ ______

ii. Given causal $X(z) = \frac{z^{-2} + 2z^{-3}}{1 - 2z^{-1} + \frac{5}{4}z^{-2} - \frac{1}{4}z^{-3}}$. Find $\lim_{n \to \infty} x[n] =$ _____

iii. Given causal
$$X(z) = \frac{2+3z^{-1}}{1-2z^{-1}+\frac{5}{4}z^{-2}-\frac{1}{4}z^{-3}}$$
.
Find $x[0] =$ _____

[5 pts] f. Given causal $X(s) = \frac{s+5}{s^3+3s^2+2s}$. Find x(t) =_____

[8 pts] g. Sketch $y(t) = 3\pi \cdot u(t+1) * \cos(\pi t)u(t)$



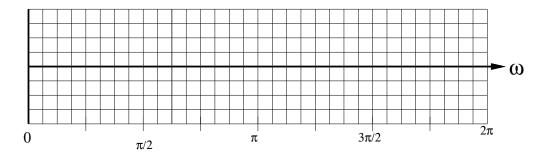
Problem 3. Digital Filter (12 pts)

A continuous time filter has impulse response $h(t) = e^{-\pi t/2}u(t)$.

[6 pts] a. The filter is sampled such that $h[n] = h(nT_s)$ where the sampling rate $T_s = 1$ sec. Find the Z transform of h[n].

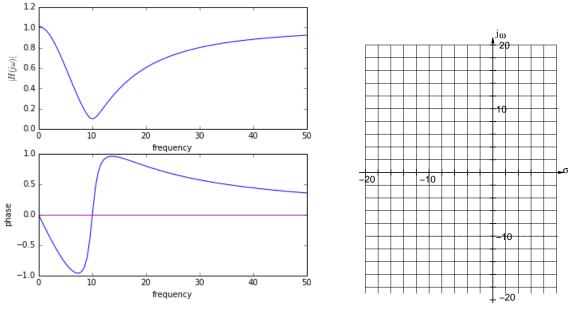
H(z) =_____

[6 pts] b. Sketch $|H(e^{j\omega})|$, labelling maximum and minimum amplitude. (Maximum and minimum may be left as functions of e).



Problem 4. CT and Digital Filters (20 pts)

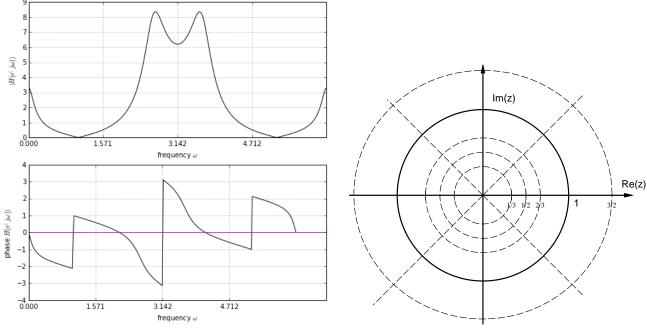
[10 pts] a. The magnitude and phase response for a continuous time, real, causal, stable LTI system is shown below. Sketch a pole-zero diagram for a stable system (using minimum number of poles and zeros) which would match the given magnitude and phase response.



Given magnitude and phase.

Sketch corresponding pole-zero plot here.

[10 pts] b. The magnitude and phase response for a discrete time, real, causal, stable LTI system is shown below. Sketch a pole-zero diagram for a stable system (using minimum number of poles and zeros) which would match the given magnitude and phase response. (Note: the phase change at π is just numerical wrapping.)



Given magnitude and phase.

Sketch corresponding pole-zero plot here.

Problem 5. Z transform (36 pts)

Consider a causal DT system with

$$H(z) = \frac{z^2 + 9/4}{z(z - \frac{1}{2})}$$

[4 pts]. a. Find the unit sample response h[n] for H(z).

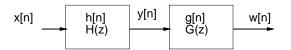
h[n] =_____

[4 pts] b. With input x[n] and output y[n], find the linear difference equation in terms of y[n] for this system:

y[n] =_____

[4 pts] c. H(z) is not minimum phase. Find a minimum phase function F(z) such that $|H(e^{j\omega})| = |F(e^{j\omega})|$ for all ω .

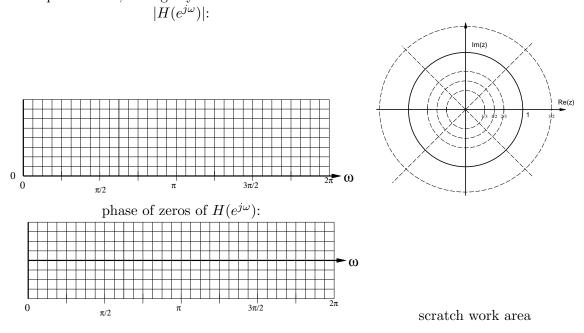
F(z) =_____



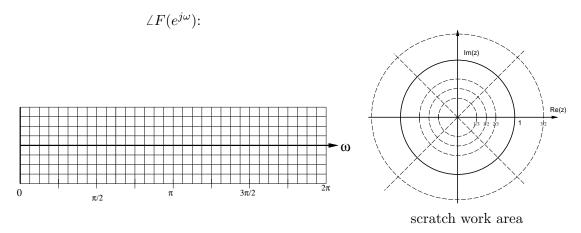
[4 pts] d. Find a stable G(z) such that $|H(e^{j\omega})G(e^{j\omega})| = 1$ for all ω .

G(z) =_____

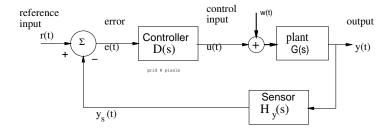
[12 pts] e. VERSION 2 Approximately sketch $|H(e^{j\omega})|$ [4 pts] and phase of the zeros only of $H(e^{j\omega})$ [8 pts] on the plots below, noting key maxima and minima.



[8 pts] f. VERSION 2 Sketch the phase due to the zeros of $F(e^{j\omega})$ on the plot below, noting key maxima and minima. (Hint: sketch phase from each zero independently, then add.)



Problem 6. Control (36 pts)



[2 pts] a. Find the transfer function $\frac{E(s)}{W(s)}$ in terms of D, G, H_y .

 $[4 \ {\rm pts}]$ b. Find the transfer function $\frac{Y(s)}{W(s)}$ in terms of $D,G,H_y.$

 $\frac{Y(s)}{W(s)} =$ ______

[10 pts] c. For the system above, let $D(s) = k_p$, $H_y(s) = 1$, and $G(s) = \frac{2\pi}{s+2\pi}$.

With input $r(t) = r_o u(t)$, and step disturbance $w(t) = w_o u(t)$ determine trend of y(t) as $t \to \infty$.

 $y(t) \rightarrow$ _____

[10 pts] d. For the system above, let $D(s) = k_p$, $H_y(s) = 1$, and $G(s) = \frac{2\pi}{s+2\pi}$.

With input r(t) = 0, and disturbance $w(t) = \cos(2\pi t)u(t)$, determine the sinusoidal steady state response for y(t) after transients have decayed. (Hint: y(t) will be of the form $M\cos(2\pi t + \phi)$. Determine M and ϕ .)

 $y(t) \approx$ _____

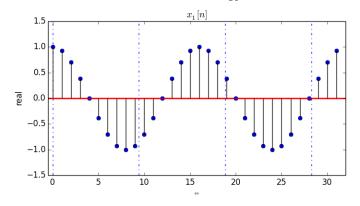
[10 pts] e. For the system above, let $D(s) = \frac{k_p + k_d s}{s^2 + 4\pi^2}$, $H_y(s) = 1$, and $G(s) = \frac{2\pi}{s + 2\pi}$.

With input r(t) = 0, and disturbance $w(t) = \cos(2\pi t)u(t) + 0.5u(t)$, determine the steady state response for y(t) after transients have decayed.

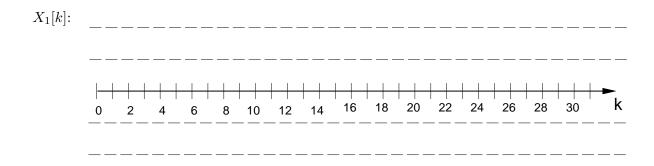
 $y(t) \approx$ ______

Problem 7. DFT problem (30 pts)

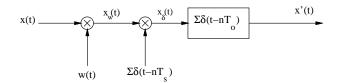
[10 pts] a. Given $x_1[n] = \cos(2\pi \frac{n}{16})$ as shown:



sketch $X_1[k]$, the 32 point DFT of $x_1[n]$, labelling amplitudes.



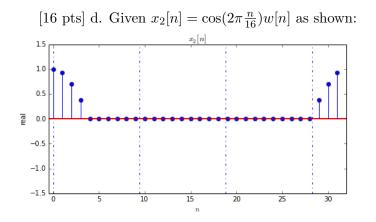
The equivalent signal processing operations for a windowed DFT can be represented by the following block diagram:



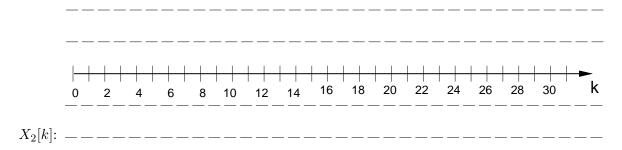
[2 pts] b. For $x_1[n]$ as given above, what are possible T_s and T_o ?

$$T_s = _$$
 $T_o = _$

[2 pts] c. For $X_1[k]$, and your T_o above, what is the equivalent spacing of the frequency samples? spacing = _____ radians/second



sketch $X_2[k]$, the 32 point DFT of $x_2[n]$, approximately labelling key amplitudes.



Area for scratch work.