










MT2.3

(a) The problem tells us that G is the set of all real-valued discrete-time signals having a region of support
[0,3]. (Note that each of the ψk’s is in the set G, but they are not the only elements of G!)

To show that G is a subspace of l2(Z) – the vector-space of all finite-energy discrete-time signals – we
first show that G is a subset of l2(Z). Clearly, this is true, because each signal in G is a discrete-time
signal, and each signal x in G has finite energy (x(0)2 +x(1)2 +x(2)2 +x(3)2 <∞). Now that we have
established that G is a subset of l2(Z), we can prove that G is a subspace by showing the following
three things:

(i) G is non-empty.

Proving this is easy – clearly G is not an empty set (for example, the zero-signal is an element of
G).

(ii) G is closed under addition.

To prove this, let x and y be two signals in G and let z denote their sum. Then since x and
y are real-valued discrete-time signals, z must also be a real-valued and discrete-time signal.
Furthermore, if x and y only have support from [0,3], then the same will hold true for z. Thus by
definition, z is also in G, and we see that G is closed under addition.

(iii) G is closed under scalar multiplication.

To prove this, let x be a signal in G, and let α be a real-valued scalar. Since x is a real-valued
discrete-time signal and α is real-valued, then αx must also be a real-valued and discrete-time
signal. Furthermore, if x only has support from [0,3], then the same will hold true for αx. Thus
by definition, αx is also in G, and we see that G is closed under addition.

Thus, we have shown that G is a subspace of l2(Z), and by definition, a subspace is also a vector
space.

(b) We need to show three things:

(i) The ψk’s are all mutually orthogonal.

To prove this, we can compute all of the pairwise inner products, and show that they are equal
to 0:

〈ψ0, ψ1〉 = 〈ψ1, ψ0〉 =
1

2
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2
+

1

2
· 1

2
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2
· −1

2
+
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2
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2
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〈ψ0, ψ2〉 = 〈ψ2, ψ0〉 =
1

2
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2
+

1

2
· − 1√

2
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〈ψ0, ψ3〉 = 〈ψ3, ψ0〉 =
1

2
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2
+

1

2
· − 1√

2
= 0

〈ψ1, ψ2〉 = 〈ψ2, ψ1〉 =
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2
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2
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2
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2
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〈ψ1, ψ3〉 = 〈ψ3, ψ1〉 = −1

2
· 1√

2
+ −1

2
· − 1√

2
= 0

〈ψ2, ψ3〉 = 〈ψ3, ψ2〉 = 0

(ii) The ψk’s are all ”unit length” (normal).
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To prove this, we can compute the following inner products, and show that they are equal to 1:

||ψ0|| =
√

〈ψ0, ψ0〉 =

√

(

1

2

)2

+

(

1

2

)2

+

(

1

2

)2

+

(

1

2

)2

= 1
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(iii) The ψk’s form a basis for G.

To prove this, we know from (i) that the ψk’s are mutually orthogonal – thus they form a set of
linearly independent vectors. By inspection, the dimension of G is 4 (it is straightforward to see
that a basis for G is {δ[n], δ[n−1], δ[n−2], δ[n−3]}, which has 4 elements, and thus the dimension
of G 4). Thus, since the ψk’s are a set of 4 linearly independent vectors in G, they must form a
basis for G.

(c) We can write

〈x, ψl〉 = 〈
3

∑

k=0

Xkψk, ψl〉

=

3
∑

k=0

Xk〈ψk, ψl〉

=

3
∑

k=0

Xkδ(k − l)

= Xl

Thus we have that

Xl = 〈x, ψl〉

=

3
∑

n=0

x(n)ψl(n)

Using the values of x(n) and the values of ψl(n) for each l = 0, 1, 2, 3 in the problem, we can simply
plug into the equation above to get

X0 =
1

2
(a+ b+ c+ d)

X1 =
1

2
(a+ b− c− d)

X2 =
1√
2
(a− b)

X3 =
1√
2
(c− d)

(d) Thinking geometrically, if we can only use the basis elements ψ0 and ψ1, then as discussed in lecture,
since the ψk’s are orthogonal, our best choices of α0 and α1 for approximating x̂ can be obtained by
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projecting x onto the subspace H. To do this, we project x onto each of the basis vectors (ψ0 and ψ1)
of that space. First we calculate the projection of x onto ψ0:

〈x, ψ0〉
||ψ0||

= 〈x, ψ0〉

= 〈
3

∑

k=0

Xkψk, ψ0〉

=

3
∑

k=0

Xk 〈ψk, ψ0〉

=

3
∑

k=0

Xk δ(k − 0)

= X0

Thus, we should choose α0 = x0. A similar projection of x onto ψ1 will show that α1 = X1.

Another way to do the problem is to expand out the expression for the approximation error:

ǫ =

3
∑

n=0

|e(n)|2

=

3
∑

n=0

|x(n) − x̂(n)|2

=

3
∑
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|
3

∑

k=0
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1

∑

k=0
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=

3
∑
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|(X0 − α0)ψ0(n) + (X1 − α1)ψ1(n) +X2ψ2(n) +X3ψ3(n)|2

=

3
∑
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2ψ2

0
(n) +

3
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n=0
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2ψ2

1
(n) +

3
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n=0

X2

2
ψ2

2
(n) +

3
∑

n=0

X2

3
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3
(n)

= (X0 − α0)
2

3
∑
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0
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2

3
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(n) +X2

2

3
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3

3
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2 +X2

2
+X2

3

where in the 5th equation above, we omitted cross terms involving different ψk’s because those terms
evaluate to 0 (because the ψk’s are mutually orthogonal, and so their inner product is zero). From
the last line, we immediately see that to minimize the approximation error energy, we should choose
α0 = X0 and α1 = X1. The corresponding approximation error energy is then X2

2
+X2

3
.

(e) From part (d), we know that the approximation error energy is equal to the sum of the squares of
the Xk’s corresponding to the basis functions that weren’t used in our approximation. Therefore, to
minimize the error energy, we should choose basis functions such that the sum of the squares of the
corresponding Xk’s is maximized. Thus, to inform our choice of basis functions for this part, let us
first calculate the Xk’s for the signal x that is given. Using our equations from part (c), we get that:

X0 = 1

X1 = 1

X2 =
√

2

X3 =
√

2

3



Based on our reasoning, from the above numbers, we see that we should pick ψ2 and ψ3. The energy
of the approximation error signal is then

ǫ = X2

0
+X2

1

= 12 + 12

= 2
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