MT2.1 (45 Points) Consider a discrete-time LTI system H whose frequency response
H(w) is shown below for —m < w < .

For every part of this problem, let w; = /3 rad/sec, and w, = 27/3 rad/sec.
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(a) (10 Points) Determine a reasonably simple, closed-form expression for h(n), the
impulse response of the system.
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(b) (i) (5 Points) Without explicitly carrying out the infinite sum, evaluate Z h(n).
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(ii) (5 Points) Without explicitly carrying out the infinite sum, evaluate Z |h(n)|?.
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(c) (10 Points) Let x denote the input to the LTI system. H. For each of the
following choices of x(n), determine a reasonably simply closed-form expression

for the corresponding output y(n).
(i) (5 Points) x(n) = cos (%n) + cos (%) + sin <?> , VneZ.
[0 ~ g ()
cos (wOV\) —>| K B \H(U’O\ oS (Wo"\’f‘

W) 1s redvaued =
svin (won) —(EL > o] s (o + EHE)

A(E) -2 -

K%)= = Dews (B + cos(Tor),
Y -

w(&) =0 - e



o 4 g

+o00
(i) (5 Points) x(n) = »_ 8(n—4¢), VYneZ.
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(d) (15 Points) In practice, non-causal filters are more difficult to implement and
use than causal filters. Suppose we make a causal approximation h(n) to the
LTI system by forming h(n) = h(n) u(n), where u(n) is the discrete-time unit
step. Let the approximation error be e(n) = h(n) — E(n). Evaluate (i.e., find
a numerical value for) the energy of the approximation error, which can be

expressed by i
T / w ﬁ w 2dw.
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MT2.3

(a) The problem tells us that G is the set of all real-valued discrete-time signals having a region of support
[0,3]. (Note that each of the ’s is in the set G, but they are not the only elements of G!)

To show that G is a subspace of I2(Z) — the vector-space of all finite-energy discrete-time signals — we
first show that G is a subset of [2(Z). Clearly, this is true, because each signal in G is a discrete-time
signal, and each signal x in G has finite energy (z(0)% +x(1)? + 2(2)2 4+ x(3)? < 00). Now that we have
established that G is a subset of [?(Z), we can prove that G is a subspace by showing the following
three things:

(i) G is non-empty.
Proving this is easy — clearly G is not an empty set (for example, the zero-signal is an element of
Q).

(ii) G is closed under addition.

To prove this, let x and y be two signals in G and let z denote their sum. Then since z and
y are real-valued discrete-time signals, z must also be a real-valued and discrete-time signal.
Furthermore, if z and y only have support from [0,3], then the same will hold true for z. Thus by
definition, z is also in G, and we see that G is closed under addition.

(iii) G is closed under scalar multiplication.

To prove this, let x be a signal in G, and let « be a real-valued scalar. Since x is a real-valued
discrete-time signal and « is real-valued, then az must also be a real-valued and discrete-time
signal. Furthermore, if z only has support from [0,3], then the same will hold true for axz. Thus
by definition, cx is also in G, and we see that G is closed under addition.

Thus, we have shown that G is a subspace of [?(Z), and by definition, a subspace is also a vector
space.

(b) We need to show three things:

(i) The v¢y’s are all mutually orthogonal.
To prove this, we can compute all of the pairwise inner products, and show that they are equal

to 0:
1 1 1 1 1 1 1 1
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(V2,¢3) = (U3,¢2) =

(ii) The wy’s are all "unit length” (normal).



To prove this, we can compute the following inner products, and show that they are equal to 1:
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(iii) The ¢’s form a basis for G.
To prove this, we know from (i) that the 1;’s are mutually orthogonal — thus they form a set of
linearly independent vectors. By inspection, the dimension of G is 4 (it is straightforward to see
that a basis for G is {d[n], §[n—1], §[n— 2], 6[n— 3]}, which has 4 elements, and thus the dimension
of G 4). Thus, since the 1;’s are a set of 4 linearly independent vectors in G, they must form a
basis for G.

(¢) We can write
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Thus we have that

Xl = <$7’(/}l>
3

= Y e

n=0

Using the values of z(n) and the values of ¢;(n) for each | = 0,1,2,3 in the problem, we can simply
plug into the equation above to get

1
Xo = §(a+b+c+d)
1
X, = §(a—|—b—c—d)
X = ()
= —((a —
2 \/5
1
X3 = —(c—d
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(d) Thinking geometrically, if we can only use the basis elements vy and 17, then as discussed in lecture,
since the ¥’s are orthogonal, our best choices of ag and «; for approximating & can be obtained by

[\



projecting x onto the subspace H. To do this, we project x onto each of the basis vectors (¢y and ;)
of that space. First we calculate the projection of x onto y:
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Thus, we should choose oy = xg. A similar projection of x onto ¥; will show that a; = X;.

Another way to do the problem is to expand out the expression for the approximation error:
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where in the 5th equation above, we omitted cross terms involving different 1;’s because those terms
evaluate to 0 (because the 1;’s are mutually orthogonal, and so their inner product is zero). From
the last line, we immediately see that to minimize the approximation error energy, we should choose
ap = Xo and a1 = X;. The corresponding approximation error energy is then X3 + X2.

From part (d), we know that the approximation error energy is equal to the sum of the squares of
the X}’s corresponding to the basis functions that weren’t used in our approximation. Therefore, to
minimize the error energy, we should choose basis functions such that the sum of the squares of the
corresponding Xj’s is maximized. Thus, to inform our choice of basis functions for this part, let us
first calculate the X}’s for the signal  that is given. Using our equations from part (c), we get that:

Xo
X1
Xo
X3
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Based on our reasoning, from the above numbers, we see that we should pick 15 and 3. The energy
of the approximation error signal is then

e = XZ+X?
— 12412
= 2



