Midterm 1

- The exam is for one hour and 50 minutes.
- The maximum score is 100 points. The maximum score for each part of each problem is indicated.
- The exam is closed-book and closed-notes. Calculators, computing, and communication devices are NOT permitted.
- Two double-sided sheets of notes are allowed. These should be legible to normal eyesight, i.e. the lettering should not be excessively small.
- No form of collaboration between students is allowed.

1. (10 points) State whether the following are true or false. In each case, give a brief explanation. A correct answer without a correct explanation gets 2 points. A correct answer with a correct explanation gets 5 points.
(a) Let $x(t)$ be a continuous time signal. Let $y_{1}(t), y_{2}(t)$, and $y_{3}(t)$ denote the respective ouputs of a causal linear time invariant system to the inputs $x(t), x^{2}(t)$, and $x^{3}(t)$. Then $y_{3}(t)$ can be determined from $y_{1}(t)$ and $y_{2}(t)$.
(b) If $x[n]$ is a nonnegative sequence with discrete time Fourier transform $X\left(e^{j \omega}\right)$, then

$$
\sum_{n=-\infty}^{\infty} x[n]=\frac{1}{2 \pi} \int_{2 \pi}\left|X\left(e^{j \omega}\right)\right| d \omega
$$

2. (10 points)

Let $x[n]$ and $y[n]$ be periodic with period 3 , with

$$
x[n]=\left\{\begin{array}{cc}
1 & \text { if } n=-1 \\
2 & \text { if } n=0 \\
1 & \text { if } n=1
\end{array}\right.
$$

and

$$
y[n]=\left\{\begin{array}{cc}
-1 & \text { if } n=-1 \\
2 & \text { if } n=0 \\
1 & \text { if } n=1
\end{array}\right.
$$

Let $z[n]$ be the periodic sequence of period 3 that is the periodic convolution of $x[n]$ and $y[n]$, i.e.

$$
z[n]=\sum_{l \in<3>} x[l] y[n-l] .
$$

Determine $z[n]$.
3. (10 points)

Let

$$
\Lambda(t)=\left\{\begin{array}{cl}
1-|t| & \text { if }|t| \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let

$$
x(t)=\sum_{n=-\infty}^{\infty} \Lambda(t-2 n) \cos \left(\omega_{0} t\right)
$$

Find the Fourier transform of $x(t)$.
Hint: The function

$$
z(t)= \begin{cases}1 & \text { if }|t| \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

has Fourier transform

$$
Z(j \omega)=\operatorname{sinc}\left(\frac{\omega}{2 \pi}\right)
$$

4. (10 points) Let $x[n]$ be a periodic sequence with period N. Assume $N=3 K$ for some integer K. Let a_{k} denote the discrete time Fourier series coefficients of $x[n]$. If $a_{k}=0$ when k is not a multiple of 3 , show that $x[n]$ must also be periodic with period K.
5. ($5+5$ points) Consider the causal linear time-invariant system whose input and output are related by the difference equation

$$
y[n]+\frac{1}{3} y[n-1]=x[n]+x[n-2]-3 x[n-5]
$$

(a) Find the transfer function of the system.
(b) Find the output of this system for the input

$$
x[n]=(-1)^{n} \text { for all } n
$$

6. $(5+5+5$ points $)$ Consider the continuous time system whose output $y(t)$ for the input $x(t)$ is given by

$$
y(t)=x\left(t-\left(\int_{t}^{t+1} x(u) d u\right)^{2}\right)
$$

Is it :
(a) linear ?
(b) causal ?
(c) BIBO stable?

In each case explain your answers briefly. There should be no ambiguity about which part of the problem you are answering. A correct answer with an incorrect explanation will get at most 2 points.
7. $(7+8$ points) Let

$$
x_{1}(t)= \begin{cases}1 & \text { if }|t| \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
x_{2}(t)=\left\{\begin{array}{cc}
t & \text { if } 0 \leq t \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Sketch $y(t)=x_{1}(t) * x_{2}(t)$. You DO NOT need to write any formulas. The shape of your sketch of $y(t)$ should be accurate and the coordinates should be properly marked.
(b) Let

$$
z_{1}(t)=\left\{\begin{array}{cc}
1 & \text { if } 0 \leq t \leq 1 \\
3 & \text { if } 1<t \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

and let

$$
z_{2}(t)=\left\{\begin{array}{cc}
t & \text { if } 0 \leq t \leq 1 \\
\frac{1}{3} t-\frac{1}{3} \text { if } 1<t \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $w(t)=z_{1}(t) * z_{2}(t)$. Determine $w(t)$ in terms of $y(t)$ using basic properties of convolution. You need not determine $w(t)$ explicitly : just write it in terms of $y(t)$.
8. $(10+10$ points $)$ Consider the function

$$
x(t)=\left\{\begin{array}{cc}
1 & \text { if }-1<t \leq 0 \\
1+t & \text { if } 0<t \leq 1 \\
2-t & \text { if } 1<t \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Find the Fourier transform $X(j \omega)$ of the function $x(t)$.
(b) Let $y(t)$ be the periodic function of period 8 defined by

$$
y(t)=\left\{\begin{array}{cc}
x\left(t-\frac{3}{2}\right) & \text { if } 0<t \leq 4 \\
-x\left(t+\frac{5}{2}\right) & \text { if }-4<t \leq 0
\end{array}\right.
$$

Find the Fourier series coefficients of $y(t)$.

