EECS120: Signals and Systems Midterm 1 Write name and ID number on each page of your solutions

Problem 1.1 Fourier Transforms and Simple Filtering Justify your answers for full credit.

a. 10pts What is the CTFT of the unit pulse $y(t) = \begin{cases} 1 & t \in [-\frac{1}{2}, +\frac{1}{2}] \\ 0 & otherwise \end{cases}$?

b. 10pts If b(t) is a periodic signal with period T, and it is represented by the Fourier Series $b(t) = \sum_{k=-\infty}^{+\infty} B_k e^{j\frac{2\pi}{T}kt}$, then what is the Fourier Series representation of c(t) = b(t-1)?

c. 15pts Consider discrete-time signals with period 2. Model these as 2-d vectors. Consider an LTI system that has impulse response h(0) = 1, h(1) = 2. Write this system as a matrix and give its eigenvectors and corresponding eigenvalues.

d. 10pts A discrete time LTI system has DTFT $1 - e^{-j\omega}$. What is its impulse response?

Problem 1.2 True/False. Do at least two of the following for full credit. If the bold statement is true, give a proof for it. If the statement is false, show a counterexample or proof that it is false.

a. 20 pts Let L be a system that acts on continuous time signals as follows: $[Lx](t) = x(t)\cos(t)$. Then, L is L.T.I.

b. 20 pts Let L be an LTI system that acts on signals that are defined on Z_N , the discrete time interval $\{0, 1, 2, ..., N - 1\}$ viewed as positions along the circumference of a circle. Delays and shifts on such signals are to be interpreted in a "wrap around" manner with $[D_{\tau}x](t) = x(t - \tau \mod N)$. Let $x_{\omega}(t) = e^{j\omega t}$. Then for every real ω there exists a constant λ_{ω} so that $Lx_{\omega} = \lambda_{\omega}x_{\omega}$.

c. 20 pts Let L be a linear system that acts on continous time signals. Let $x_{\omega}(t) = e^{j\omega t}$. There exists a complex valued function $\lambda(\omega)$ so that for a particular subset of real $\omega \in \Omega$, the system L has the property that $[Lx_{\omega}](t) = \lambda(\omega)x_{\omega}(t)$. Then, for the class of signals that can be written $y(t) = \sum_{i=1}^{N} \alpha_i x_{\omega_i}(t)$ (where the $\omega_i \in \Omega$), the system L is LTI.

Problem 1.3 AM Modulation System

In the above continuous time system, consider the LPF to be ideal and to perfectly pass through all frequencies less than 2.

$$H_1(\omega) = \begin{cases} 1 & if \ |\omega| < 2\\ 0 & otherwise \end{cases}$$

and $\omega_0 = 10$ so that

$$y(t) = x(t)\cos(\omega_0 t)$$

and

$$z(t) = y(t)\cos(\omega_0(t+\phi))$$

a. 15pts Suppose $\phi = 0$ and $x(t) = \sin(t)$. What are $y(t), z(t), \hat{x}(t)$?

b. 15pts Suppose $x(t) = \sin(t)$ but $\phi \neq 0$. What is $\hat{x}(t)$ as a function of ϕ ? Please plot the power of $\hat{x}(t)$ as a function of ϕ .

c. 10pts Suppose now that y(t) was corrupted by some potentially interfering signal and so the input to mixer 2 was now $y'(t) = y(t) + \sin(\omega_n t)$ rather than just y(t). For what values of ω_n would you see an undesirable component in $\hat{x}(t)$?