Problem #1 Discrete Fourier Transform (DFT) (40 points)

As discussed in class and in the DFT handout, the block diagram below represents the operations involved in finding to DFT of a time signal x(t).

Recall that the DFT of length *N* sequence x[n] is $X[k] = sum(x[n]*e^{(-j*2*pi*n*k/N)}, n=0, n=N-1)$. X[k] values can be found by using the block diagram

to find X'(w) and then noting that $X[k] = To/(2*pi)*area{X'(k*2*pi/To)}$. For each part below, with Ts = 1 second, To seconds, match the time samples

x[n] (= area{x'(nTs)} (1 pt. each) and DFT samples X[k] (4 pts. each) with the time signal x(t).

The window function: $w(t) = \{ 0 \text{ if } t < 0, 1 \text{ if } 0 - <= t < 16, 0 \text{ if } 16 - <=t \}$

Hint: $w(t) \sim = PI[(t-To/2)/To]$

For each part, pick the letter of the matching plot from the next pages. Hint #1: All X[k] are real. Hint #2: x[n] are A-H X[k] are I-P.

a) $x_1(t) = \cos(pi^*t/8)$

---->x1[*n*] is plot:

---->X1[*k*] is plot:

b) $x_2(t_0 = \cos(p_i t/4)$

---->x2[*n*] is plot:

---->X2[*k*] is plot:

c) $x_3(t) = \cos(p_1 t/2)$

---->x3[*n*] is plot:

---->X3[*k*] is plot:

EECS 120, Fall 2000exam #Professor Fearing

d) $x4[n] = {\cos(n*pi/8) \text{ if } n \text{ even}, 0 \text{ if } n \text{ odd}}$

---->x4[*n*] is plot:

---->X4[*k*] is plot:

e) x5(t) =

---->x5[*n*] is plot:

---->X5[*k*] is plot:

f) x6(t) = cos[pi/3*(t-To/2)]

---->x6[*n*] is plot:

---->X6[*k*] is plot:

g) x7(t) =

---->x7[*n*] is plot:

---->X7[*k*] is plot:

Plots for Prob 1:

(10 pts.) a) Let $x_1(t) = m(t)\cos(4000*pi*t)$. Sketch $x_1(t)$ for $0 \le t \le 2*10^{-3}$ sec, labeling peak height and accurately indicating zero crossings.

Sketch X1(w), labeling height/area, center frequency, and sideband frequencies.

(10 pts.) b) Let $x_2(t) = (1+m(t))\cos(4000*pi*t)$. Sketch $x_2(t)$ for $0 \le t \le 2*10^{-3}$ sec, labeling peak height and accurate indicating zero crossings.

Sketch X2(w), labeling height/area, center frequency, and sideband frequencies.

(6 pts.) c) $x^2(t) = (1+m(t))\cos(4000*pi*t)$ is passed through the system shown, with wf = 1500*pi

Hint: S(w) = sum((2*sin(k*pi/2)/k)*delta(w-4000*pi*k)), k=-infinity to +infinity)

Sketch Z(w), labeling height area/area, center frequencies, and sideband frequencies for 0<=w<=12000*pi

[Hint: Z(w) is real and even]

(8 pts.) d) $x_1(t) = m(t)\cos(4000*pi*t)$ is passed through an ideal diode and ideal low pass filter H(w), with wf = 1500*

Approximately sketch v(t), for $0 \le t \le 2*10^{-3}$ sec

Is v(t) an accurate estimate of the form of m(t)? Why or why not?

(8 pts.) e) Let $x_3(t) = m(t)\cos(4000*pi*t) + (m(t)*1/(pi*t))\sin(4000*pi*t)$. Sketch X3(w), labeling height/area, center frequency, and sideband frequencies.

Problem #3 (12 points)

You are given modulation $m(t) = \cos(1000^*\text{pi}^*t)$, which drives 4 transmitters a, b, c, and d. Each transmitter generate new signals a(t),b(t),c(t),d(t) with spectra A(w), B(w), C(w), D(w) using m(t), as shown below:

For each transmitter, identify the modulation method used (for example, AM - DSB - LC, WB FM, etc.), the channel bandwidth used, and the power efficiency (fraction of power transmitting useful information).

	Modulation Method	Channel BW	Power Efficiency
A(w)			
B(w)			
C(w)			
D(w)			

Problem #4 (6 points)

The Federal Communications Commission has assigned you a transmission channel from 1.000 MHz to 1.010 MHz. You have two bandlimited message signals m1(t) and m2(t) with spectra M1(w) and M2(w), as shown:

Draw a block diagram for a transmitter that could send both messages simultaneously in the given channel bandwidth. Your transmitter contains multiplier blocks, oscillators, and summers only.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>examfile@hkn.eecs.berkeley.edu.</u>