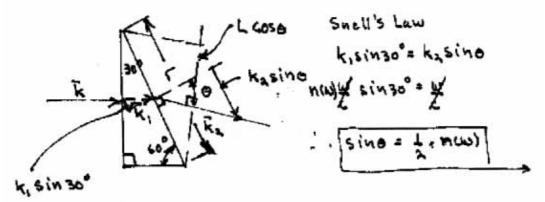
untitled

Electrical Engineering 118 Spring 2001 Midterm 1 Solutions Professor Gustafson


Problem #1 (30 points)

5pts a) k = w/c = (2*pi*f)/c

5pts b) $k_1 = (w/c)*n = 2*pi*(f/c)*n$ with n evaluated at w

5pts c) $k_2 = w/c$

5pts d)

5pts e) $1/2 [n(w) + (dn/dw)^*(delta w)] = sin(theta + delta theta) = sin(theta)^*cos(delta theta) + cos(theta)^*sin(delta theta) = sin(theta) + cos(theta)^*(delta theta)$

Therefore, 1/2 [dn/dw] * (delta w) = cos(theta)*(delta theta) and (delta theta)/(delta w) = $1/2*dn/dw*1/cos(theta) = 1/2*(dn/dw)*[1 - 1/4*n^2(w)]^{-1/2}$

5pts f) Resolution. Diffraction angle in the direction theta is approximately equal to lambda/(L*cos(theta)). To resolve two frequencies, must be separated by they diffraction angle.

delta w = 2*(delta theta)/(dM/dw)*cos(theta) = (lambda/L)*2/(dn/dw)*(4*pi*c)/(w*dn/dw)*(1/L).

5pts g) w*dn/dw = 0.007 * (625/50) = 0.0875

Therefore, $10^{11} = (2^{3} \times 10^{10})/(0.0875 \times (1/L))$ so L = 6.869

Problem #2 (30 points)

6pts a) $Id_1 = P_1 * e^{-(aL)} * ne/(hbar*w), Id_2 = P_2 e^{-(-aL)} * ne/(h*w)$

6pts b) Id_1 = (I1 - Ith)*n_i*dm/(a_i + a)*n*e^(-aL), Id_2 = (I2 - Ith)*n_i*dm/(a_i + a)*n*e^(-aL)

7pts c) i_NT^2 = 4kT/R*(delta f), K^2 = (I1 - I2)^2/(4kT*(delta f)/R)*[(n_i*n*dm)/(a_i + a)*e^(-aL)]^2

11pts d) Thermal noise $i_NT^2 = 4kT/R^*(delta f)$, Shot noise $= 2*e^n*P_2*e^(-aL)*n*e/(hbar*w)*M^2*F$.

untitled

Equate these and solve for M.

Problem #3 (10 points)

Sampling rate = 2*(delta f) = 100E6 Hz. 10 bits/sample ==> Bit rate = 1GBit/sec.

Bit Rate = $2*(\text{delta f})*\ln_2(M)$ 1E9 = 1E8 * $\ln_2(M)$ $\ln_2(M) = 10 \implies M = 2^{10} = 1028$ $M = (1 + S/N)^{(1/2)} \implies S/N = 2^{20}$

 $10*\log(S/N) = 20*\log(1028) = 60$ dB

Often change Eq(1) to base 10.

Bit Rate = $2*(\text{delta f})*[\log(1 + S/N)]^{(1/2)}*\log 10 = 2*(\text{delta f})*[\log(1 + S/N)]^{(1/2)}*3.32 = 3.32/10*(\text{delta f})*10*\log(1 + S/N)$

Back To Exam

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>examfile@hkn.eecs.berkeley.edu.</u>