UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

Professor Oldham

Spring 1999

EECS105 — Midterm 2

Thursday, 8 April 1999

Your name: _____

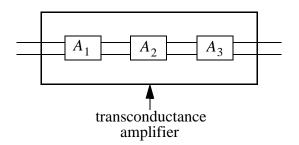
last

Your discussion TA: Allan Chang **Lily** Tam

first

- This is a closed book exam, but you may use your 2 pages of notes.
- Please do all your work on the pages of this exam. Ask if you need extra paper.
- Full credit will be given only when you indicate the source of your answer, such as a table, graph, or calcula-• tion.
- Please write your name in the above space
- **SPECIAL NOTES:**
 - 1. QUESTIONS: Because it is disturbing to others in the exam when we pass by to answer questions, we must ask you to please limit your questions. Re-read the exam question and be sure that the data or equation you need is not already provided.
 - 2. GRAPHS AND FORMULAS PROVIDED: At the back of the exam are several pages of formulas, and data in the form of graphs. Please look for information here rather than asking a question.

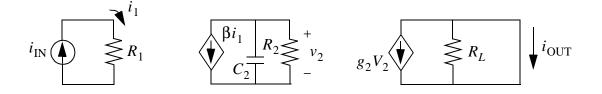
Yes, I have looked these over. (Check box)

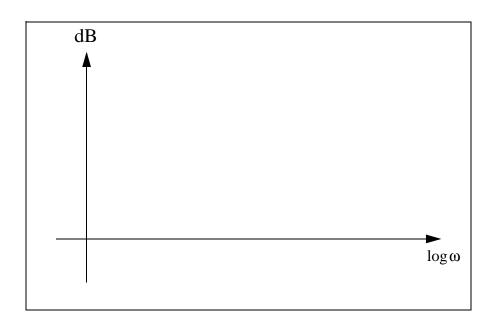

- 3. SOME PARTS OF THE EXAM ARE GRADED WITH NO PARTIAL CREDIT. They are noted. You may wish to double check your answers on those parts.
- 4. DEVICE PROPERTIES: Unless otherwise specified, assume n-channel transistors have

 $V_{\rm tn} = 0.5 \text{ V}, \mu C_{\rm ox} = 50 \mu \text{A/V}^2$, and p-channel transistors have $V_{\rm tn} = -0.5 \text{ V}, \mu C_{\rm ox} = 25 \mu \text{A/V}^2$. In small-signal calculations assume a lambda of 0.05 for both types. Assume bipolar transistors have beta of 100 and $I_{\rm FS}$ of 10-15 A (both npn and pnp transistors). In small-signal calculations assume the Early voltage is 20 V. You are to ignore lambda and Early voltage in biasing calculations.

	SCORE
Problem 1 (15 pts.)	
Problem 2 (15 pts.)	
Problem 3 (20 pts.)	
Problem 4 (25 pts.)	
Problem 5 (25 pts.)	
TOTAL (100 pts.)	

Problem 1 (15 pts., NO Partial Credit)


You buy three voltage amplifiers with the following specifications: $R_{in} = 10^5$, $R_{out} = 10^5$, A = 10. You hook them up in series (i.e., output 1 = input 2, etc.), and place them in a black box. You are going to sell this box as a transconductance amplifier. What are the specifications of the transconductance amplifier?


Problem 2 (15 points)

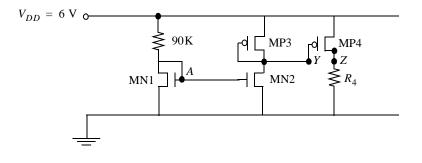
a. Find the phasor representing the ratio of short-circuit output current to input current for the following circuit:

$$\mathbf{A}_1 \equiv \frac{\mathbf{I}_{\text{out}}}{\mathbf{I}_{\text{in}}} = -$$

b. What is the general shape of the frequency response? Sketch magnitude vs frequency on dB scale provided on pg. 2.

Problem 3 (20 points)

Sketch the Bode plot on the graphs provided for the following function. Please show your work. (Neatness and clarity are important.) Only straight-line approximations are wanted.


$$\mathbf{F} = \frac{200j\omega \times \left(1 + \frac{j\omega}{200}\right)}{(2+j\omega)(1+100j\omega)(1+0.0002j\omega)}$$

Problem 3 Worksheet

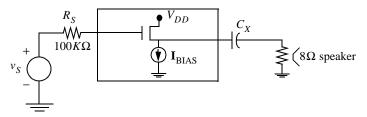
Problem 4 (25 points)

In the circuit below, the reference node A is at a potential of 1.5 V. The W/L ratios for the n-channel devices are chosen as: $(W/L)_2 = 2(W/L)_1$. For the p-channel devices $(W/L)_4 = 10(W/L)_3$. Also, $\left(\frac{W}{L}\right)_3 = 4\left(\frac{W}{L}\right)_1$.

- **a.** Find W/L for n-channel device MN1 (to produce the required 1.5 V at node A).
- **b.** Find the drain current of MN2 and the node voltage V_{γ} .
- **c.** Find the value of R_4 needed to produce a voltage of 3 V at node Z.

 $(W/L)_1 =$ _____

 $I_{D2} =$ _____

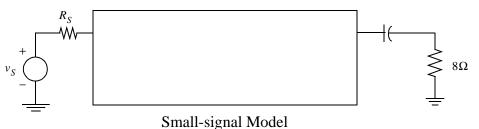

$$V_Y =$$

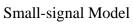
$$R_4 =$$

Problem 4 Worksheet

Problem 5 (25 points)

a) You are given one "power nMOS" transistor and need to construct a transistor circuit to drive an 8 ohm speaker through a coupling capacitor C_X . (The "power nMOS" transistor has a 1V threshold, a W/L of 10^4 , and $\mu C_{ox} = 50\mu A/V^2$. The source is connected to the body internally.) Your circuit should have a voltage gain of about 0.5 at higher frequencies (that is, at frequencies high enough that the impedance of C_X is negligible). (Note that C_X must be quite large to have a good low frequency response.) The bias current source you have available is essentially ideal (i.e., infinite parallel resistance). You choose the circuit below.




a) Draw the small-signal model for this amplifier in the box opposite, ignoring all internal device capacitances and parasitic resistances.

b) Solve for the "mid-band" gain A_M (formula in terms of circuit and device parameters). The mid-band gain is a real quantity. It is the gain at frequencies high enough that coupling capacitors act as shorts, yet the frequency is low enough that capacitors to ground are negligible.

A_M = _____

c) Find the mid-band gain of the circuit A_M at a bias current of $I_{BIAS} = 10 \text{ mA}$.

b.

Appendix A:

Appendix B:

Appendix C: Formulas

(EQ 2.7)	$n_o \cdot p_o = n_i^2(T)$
(EQ 2.34)	$v_{dn} = -\mu_n E$
(EQ 2.55)	$J_n = J_n^{dr} + J_n^{diff} = qn\mu_n E + qD_n \frac{dn}{dx}$
(EQ 2.56)	$J_p = J_p^{dr} + J_p^{diff} = qp\mu_p E - qD_p \frac{dp}{dx}$
(EQ 2.67)	$R = \left(\frac{1}{qN_d\mu_n t}\right) \left(\frac{L}{W}\right) = R_{\rm m} \left(\frac{L}{W}\right) = R_{\rm m} N_{\rm m}$
(EQ 3.1)	$\frac{dE}{dx} = \frac{\rho}{\varepsilon}$
(EQ 3.4)	$E(x) = -\frac{d\phi(x)}{dx}$
(EQ 3.56)	$X_{do} = x_{no} + x_{po} = \sqrt{\left(\frac{2\varepsilon_s \phi_B}{q}\right)\left(\frac{1}{N_a} + \frac{1}{N_d}\right)}$
(EQ 3.88)	$V_{FB} = -(\phi_{n+} - \phi_p)$
(EQ 3.89)	$Q_G(V_{GB} = V_{FB}) = 0$
(EQ 3.95)	$V_{Tn} = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \sqrt{2q\varepsilon_s N_a (-2\phi_p)}$
(EQ 4.18)	$V_{DS_{SAT}} = V_{GS} - V_{Tn}$
(EQ 4.19)	$I_{D_{SAT}} = \left(\frac{W}{2L}\right) \mu_n C_{ox} (V_{GS} - V_{Tn})^2 = \left(\frac{W}{2L}\right) \mu_n C_{ox} V_{DS_{SAT}}^2$
	$I_D = 0 \text{ A} \tag{V_{GS} \le V_{Tn}}$
(EQ 4.59)	$I_{D} = (W/L)\mu_{n}C_{ox}[V_{GS} - V_{Tn} - (V_{DS}/2)](1 + \lambda_{n}V_{DS})V_{DS} (V_{GS} \ge V_{Tn}, V_{DS} \le V_{GS} - V_{Tn})$
	$I_{D_{SAT}} = (W/2L)\mu_n C_{ox} (V_{GS} - V_{Tn})^2 (1 + \lambda_n V_{DS}) (V_{GS} \ge V_{Tn}, V_{DS} \ge V_{GS} - V_{Tn})$
(EQ 4.60)	$V_{Tn} = V_{TOn} + \gamma_n (\sqrt{-V_{BS} - 2\phi_p} - \sqrt{-2\phi_p})$
(EQ 4.67)	$g_m \cong \left(\frac{W}{L}\right) \mu_n C_{ox} (V_{GS} - V_{Tn}) = \sqrt{2\left(\frac{W}{L}\right) \mu_n C_{ox} I_D}$

(EQ 6.10)
$$\phi_B = V_{th} \ln\left(\frac{p_{po}}{p_{no}}\right)$$
 and $\phi_B = V_{th} \ln\left(\frac{n_{no}}{n_{po}}\right)$

(EQ 6.22)
$$p_n(x_n) = p_{no} \cdot e^{V_D / V_{th}}$$
 and $n_p(-x_p) = n_{po} e^{V_D / V_{th}}$

(EQ 6.30)
$$J = q n_i^2 \left(\frac{D_p}{N_d W_n} + \frac{D_n}{N_a W_p} \right) (e^{V_D / V_{th}} - 1)$$

(EQ 6.31)

)
$$I_D = q n_i^2 A \left(\frac{D_p}{N_d W_n} + \frac{D_n}{N_a W_p} \right) (e^{V_D / V_{th}} - 1) = I_o (e^{V_D / V_{th}} - 1)$$

(EQ 6.48)

$$C_j = \frac{C_{jo}}{\sqrt{1 - V_D / \phi_B}}$$

Appendix D: Values

$$q = 1.6 \times 10^{-19}C$$

$$V_t = kT/q = 0.026 V$$

$$\varepsilon_0 = 8.85 \times 10^{-14} \text{ F/cm}$$

$$\varepsilon_{\text{oxide}} = 3.9\varepsilon_0$$

$$\varepsilon_{Si} = 11.7\varepsilon_0$$

Appendix E: SIA unit multipliers:

 $M = 10^{6}$ $K = 10^{3}$ $m = 10^{-3}$ $\mu = 10^{-6}$ $n = 10^{-9}$ $p = 10^{-12}$ $f = 10^{-15}$