Problem #1
BiCMOS Transresistance Amplifier [22 points]

(a) [4 pts.] Draw the two-port small-signal model for this two-stage amplifier, with the small-signal source (and R_S) and the load resistor R_L attached. Your model should show the cascaded models for each stage; there is no need to substitute the expressions for the input and output resistances and gain elements for each stage.

(b) [4 pts.] Find the numerical value of the input resistance of this amplifier, R_in.

(c) [4 pts.] Find the numerical value of the output resistance of this amplifier, R_out. Your answer need only be correct to within plus or minus 5% for full credit.

(d) [6 pts.] Find the numerical value of the transresistance R_m. Note that R_S = infinity and R_L = infinity for calculating this two-port parameter. Your answer need only be correct to within plus or minus 5% for full credit.

(e) [4 pts.] If the current supplies I_BIAS, i_SUP,1, and i_SUP,2 all need a minimum voltage of 0.5 V across
them in order to function, what are the maximum and minimum values of \(v_{\text{OUT}} \)? (In other words, find the output swing of the transresistance amplifier.)

Problem #2
Static CMOS Logic Gate [18 points]

(a) [5 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for \(Q \) in terms of the three inputs, \(A \), \(B \), and \(C \)? Note: you can use a truth table to answer this question.

(b) [4 pts.] We would like to have the worst case low-to-high and high-to-low propagation delays to be equal. Find the required relationship between the width-to-length ratio \((W/L)_n\) of the NMOS transistor and the width-to-length ratio \((W/L)_p\) of the PMOS transistors.

(c) [5 pts.] This logic gate has no load capacitance or wire capacitance (it does have parasitic drain-to-bulk capacitances, however.) Find the channel length transistors \(L_p = L_n \) so that the worst case low-to-high propagation delay \(t_{\text{PLH}} = 10^{-11} \text{s} = 100 \text{ps} \).

Given: \(MU_p = 100 \text{ cm}^2/\text{Vs} \), \(C_{\text{ox}} = 2.5 \text{ fF/um}^2 \), and the drain-to-bulk capacitance of each transistor is \(C_{\text{DB}} = (1/3) C_{\text{ox}} W L \).

If you couldn't solve part (b), you can assume that \((W/L)_p = 2.5(W/L)_n\) for this part (not the correct answer to (b), of course.)

(d) [4 pts.] Find the ratio of the best case propagation delays.

\[
t_{\text{PHL}}/t_{\text{PLH}}
\]

If you couldn't solve (b), you can assume that \((W/L)_p = 2.5 (W/L)_n\) for this part (not the correct answer to (b), of course.)
Problem #3
Bipolar Transistor Physics [10 points]

Given:

\[N_{dE} = 10^{18} \text{cm}^{-3}, \]
\[N_{aB} = 5 \times 10^{16} \text{cm}^{-3}, \]
\[N_{dC} = 4 \times 10^{15} \text{cm}^{-3}. \]

The base and emitter widths are \(W_B = W_E = 0.25 \text{ um} \). The area of the emitter-base junction is \(A_E = 1000 \text{ um}^2 \) and the area of the base-collector junction is \(A_C = 3000 \text{ um}^2 \). The electron diffusion coefficient in the base is \(D_{nB} = 10 \text{cm}^2/\text{s} \) and the hole diffusion coefficient in the emitter is \(D_{pE} = 5 \text{cm}^2/\text{s} \). The charge on an electron is \(q = 1.6 \times 10^{-19} \text{C} \).

(a) [5 pts.] For the bias condition where \(V_{\text{OUT}} = 2.5V \), sketch the minority carrier concentration in the base on the graph below. Label the numerical value of \(n_pB \) (\(x = 0 \)).

(b) [5 pts.] Find the numerical value for the bias voltage \(V_{\text{BIAS}} \) for which the bipolar transistor just enters saturation (\(V_{\text{OUT}} = 0.2V \)).

Solutions!

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.