Student ID \#:

University of California at Berkeley

 Electrical Engineering and Computer Science

 Electrical Engineering and Computer Science

 EE105 Midterm Examination \#1

 EE105 Midterm Examination \#1
 March 5, 2014
 (50 minutes)

CLOSED BOOK; Two standard $8.5 " \times 11 "$ sheet of notes (both sides) permitted

IMPORTANT NOTES

- Read each problem completely and thoroughly before beginning to work on it
- Summarize all your answers in the boxes provided on these exam sheets
- Show your work in the space provided so we can check your work and scan for partial credit
- Remember to put your name in the space above

Problem \#	Points Possible	Score
1	20	
2	40	
3	40	
Total	100	

EE105 Spring 2014
D.J. Allstot

1. True/False questions (20 points)

For each of the following statements, state "T" for true or "F" for false. No explanation necessary. Correct answers are worth +2 point and incorrect answers yield -2 point. 0 points for unanswered questions. Your minimum total score on this problem is zero points.

| (a) The input resistance of a common-base stage depends on the load resistance, |
| :--- | :--- | :--- |
| R_{L}. (Include r_{o}) | (b) Assuming a constant current source load, the voltage gain, Av, of a cascode | common-emitter amplifier is twice as large as that of a common-emitter |
| :--- |
| amplifier without cascode. |

2. DC Bias Circuits ($\mathbf{4 0}$ points). In the circuit below, all devices operate in the forward-active region (FAR). In all cases, assume $\mathrm{I}_{\mathrm{S} 1}=\mathrm{I}_{\mathrm{S} 2}=10^{-17} \mathrm{~A}, \mathrm{I}=1 \mathrm{~mA}$ and $\mathrm{R}=100 \Omega$.

(a) Find the value of IO with $\beta_{1}=\beta_{2}=\infty$.

(a) $\mathrm{I}_{\mathrm{O}}=$	

(b) Find the value of IO with $\beta_{1}=100$ and $\beta_{2}=\infty$.

(b) $\mathrm{I}_{\mathrm{O}}=$	\square

(c) Find the value of I_{O} with $\beta_{1}=\infty$ and $\beta_{2}=100$.

(c) $\mathrm{IO}=$	

3. (40 points) Small-signal gain calculations. In the circuits below, all devices operate in the forward-active region (FAR). In both cases, assume for $D C V_{B E 1}=V_{B E 2}, \beta_{1}=\beta_{2}=\infty$ and $V_{A 1}=$ $\mathrm{V}_{\mathrm{A} 2}=\infty$.

Derive expressions for the small-signal voltage gains, $\mathrm{A}_{v}=\mathrm{V}_{\mathrm{O}} / \mathrm{Vi}$ and compute the value of the ratio of the two gains, $\operatorname{Av}(\mathrm{b}) / \operatorname{Av}(\mathrm{a})$.

EE105 Spring 2014
D.J. Allstot

Blank Work Sheet for Problem \#3.

$\mathbf{V o} / \mathbf{V i}(\mathbf{a})=$	
$\mathbf{V o} / \mathbf{V i}(\mathbf{b})=$	
Gain Ratio $=$	

