University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Final Exam

Spring 2007

Prof. Ming C. Wu

May 11, 2007

Guidelines

- Open book, open notes.
- You may use a calculator.
- No cell phone or other electronic devices are allowed.
- Show all your work and reasoning on the exam in order to receive full or partial credit.
- The problem may contain more information than you need. Just use the conditions that you think is necessary for the solution.
- Exam Time: 180 minutes

- (1) Please answer the following questions.
 - a) [2 pt] (<u>Single choice</u>) The drain current in a PMOS FET is conducted by (A) electron, (B) hole, (C) both.
 - b) [2 pt] (Single choice) The drain current in a NMOS FET is conducted by (A) electron, (B) hole, (C) both.
 - c) [3 pt] (<u>Single choice</u>) The <u>collector</u> current in an NPN bipolar transistor is conducted by (A) electron, (B) hole, (C) both.
 - d) [3 pt] (<u>Single choice</u>) The <u>collector</u> current in a PNP bipolar transistor is conducted by (A) electron, (B) hole, (C) both.
 - e) [5 pt] What is the flatband voltage of an MOS capacitor with a p-type substrate (doping = 10^{15} cm⁻³), a heavily doped p-type polysilicon gate, and a high-k dielectric with a thickness of 10 nm and a dielectric constant of 30.
 - f) [5 pt] For an NMOS with a substrate doping of 10^{15} cm⁻³ (you have to determine the doping type yourself), a heavily doped n-type polysilicon gate, a 10-nm-thick oxide (dielectric constant = 3.9), find the *voltage drop across the oxide* when the NMOS is biased at the onset of inversion (i.e., at threshold).
 - g) [5 pt] The small-signal equivalent circuit of a forward-biased P-N junction diode is a resistor. What is the resistance value when the diode is biased at 10 mA? Assume both N and P doping concentrations are 10^{16} cm⁻³. The area of the diode is 100μ m x 100μ m.
 - h) [5 pt] The small-signal equivalent circuit of a reverse-biased P-N junction diode is a variable capacitor. What is the capacitance tuning ratio (i.e., the ratio of the maximum and the minimum capacitance) if the bias is varied from -1V to -10V? Assume both N and P doping concentrations are 10^{16} cm⁻³. The area of the diode is 100µm x 100µm.
- (2) For the bipolar amplifier shown in the following. Ignore base current for Part a) to d).
 - a) [5 pt] What is the DC voltage at node X?
 - b) [5 pt] Calculate the small-signal parameters (i.e., g_m , r_π , r_0) of Q_1 .
 - c) [5 pt] What is the small-signal gain of the amplifier?
 - d) [5 pt] What is the input resistance?
 - e) [5 pt] If we take into account the finite base currents in Q_2 and Q_3 , what would be the collector current in Q_1 ? What is the percentage error introduced in Part c)?

(3) Consider the amplifier below:

- a) [5 pt] Ignore the base current of BJTs, find the DC voltages at nodes X and Y.
- b) [5 pt] What is the emitter area ratio of Q_2 and Q_3 ? Calculate the emitter area of Q_2 if $I_{S,3} = 10^{-15}$ A and the emitter area of Q_3 is $2\mu m \ge 2\mu m$.
- c) [5 pt] Find the output resistance of the amplifier.

- (4) Consider the following circuit:
 - a) [5 pt] Calculate the DC bias voltage, V_B , such that the DC voltage of the output node is 1V. You need to include channel length modulation in your calculation.
 - b) [5 pt] Under the DC bias condition, calculate the small-signal voltage gain of the amplifier.
 - c) [5 pt] Find the input and output pole frequencies. What is the 3-dB frequency of this amplifier (in Hz)?

- (5) The following is a CMOS 2-stage amplifier:
 - a) [3 pt] Find the DC bias currents in M_1 and M_3 .
 - b) [6 pt] Find the small-signal voltage gain and the output impedance of the amplifier $(R_L = \infty)$.
 - c) [3 pt] For $R_L = 100 \text{ k}\Omega$, find the maximum and minimum output voltages with all transistors in saturation.
 - d) [3 pt] For $R_L = 100 \Omega$, find the maximum and minimum output voltages with all transistors in saturation.

