EE105, Spring, 2005, Midterm 1, Howe

1. MOSFET circuit [17 points]

(a) [3 pts.] Assuming that the transistor is operating in saturation, find an equation for the drain current i_{D} in terms of the input voltage v_{IN}, the output voltage $v_{\text {OUT }}$, and the device parameters. It is not necessary to substitute numerical values.
(b) [4 pts.] For $v_{\text {IN }}=1.5 \mathrm{~V}$, (i) find the numerical value of the output voltage in Volts and (ii) verify that the transistor is saturated for this case.
(c) [3 pts.] For $v_{\text {IN }}=0.5 \mathrm{~V}$, (i) find the numerical value of the output voltage in Volts and (ii) identify the transistor's operating region.
(d) [4 pts.] Sketch the output voltage $v_{\text {OUT }}$ as a function of the input voltage $v_{I N}$ over the range $0 \mathrm{~V} \leq v_{I N} \leq 2.5 \mathrm{~V}$ on the graph below. Note: the current source I_{S} only works for $v_{\text {OUT }}>0 \mathrm{~V}$ and is a short-circuit for $v_{\text {OUT }}=0 \mathrm{~V}$.

(e) [3 pts.] For a DC input voltage $V_{I N}=1.5 \mathrm{~V}$, find the numerical value of the transconductance g_{m}. If you couldn't solve part (b), you can assume that $V_{\text {OUT }}=0.25$ V for this part (not the correct answer to (b), of course).
2. Integrated charge-storage element [17 points]

Given: The n region connected to electrode B is doped with phosphorus with $\mathrm{N}_{\mathrm{d}}=2 \times 10^{16} \mathrm{~cm}^{-3}$ and with boron $\left(\mathrm{N}_{\mathrm{a}}=1 \times 10^{-16} \mathrm{~cm}^{-3}\right)$. The p region connected to electrode A is doped with only boron $\left(\mathrm{N}_{\mathrm{a}}=1 \times 10^{-16} \mathrm{~cm}^{-3}\right)$. The permittivity of silicon is $\varepsilon_{\mathrm{s}}=1.035 \times 10^{-12}$ F / cm and the permittivity of oxide is $\varepsilon_{\mathrm{ox}}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$. The thin oxide has a thickness $\mathrm{t}_{\mathrm{ox}}=10 \mathrm{~nm}$. The built-in potential of aluminum is $\varphi_{\mathrm{Al}}=-360 \mathrm{mV}$
(a) [4 pts.] Sketch the charge density in thermal equilibrium along the x axis (see location in the cross section above. Given: the width of the depletion region on the p-side of the junction is $\mathrm{x}_{\mathrm{po}}=140 \mathrm{~nm}=0.14 \mu \mathrm{~m}$. Unit charge: $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$.

(b) [3 pts.] Find the numerical value of the junction capacitance $\mathrm{C}_{\text {junction }}(0)$ between the $20 \times 20 \mu \mathrm{~m}^{2} \mathrm{n}$-type region and the underlying p layer in the thermal equilibrium (v_{BA} $=0 \mathrm{~V}$) in fF . Given: $1 \mathrm{fF}=10^{-15} \mathrm{~F}$. Hint: the information given in part (a) should be very useful.
(c) [4 pts.] Plot the junction capacitance versus v_{BA} on the graph below. If you couldn't solve part (b), you can assume that the thermal equilibrium capacitance is 1000 fF in order to do this part.

(d) [3 pts.] Sketch the capacitance of the $20 \times 20 \mu \mathrm{~m}^{2}$ thin-oxide area as a function of the voltage V_{AB} on the graph below. Given: due to oxide charges, the threshold voltage is $\mathrm{V}_{\mathrm{Tn}}=4 \mathrm{~V}$, the minimum capacitance of the structure is one-half the maximum capacitance, and the thermal equilibrium capacitance is three-quatters of the maximum.

(e) [3 pts.] Sketch the capacitance C_{ba} as a function of the voltage V_{AB} on the graph below. Ignore the contribution of the overlap of the metal onto the thick-oxide regions.

3. IC resistors [16 points]

$\square \begin{aligned} & \text { Implant Mask } \\ & \text { (clear field) }\end{aligned}$

Contact Mask (dark field)
Metal Mask (clear field)
$0.3 \mu \mathrm{~m}$ $\mathrm{X} 0.3 \mu \mathrm{~m}$

Process Sequence:

1. Starting material: boron-doped silicon wafer with a concentration of $2 \times 10^{17} \mathrm{~cm}^{-3}$
2. Deposit a $0.2 \mu \mathrm{~m}(=200 \mathrm{~nm})$ thick SiO_{2} layer
3. Pattern the oxide using the Oxide Mask (dark field) by etching it down to the silicon.
4. Implant the phosphorus with dose $\mathrm{Q}_{\mathrm{d}}=2 \times 10^{12} \mathrm{~cm}^{-2}$ and anneal to form a 50 nm thick phosphorus-doped regions where the silicon is exposed.
5. Spin on photoresist and pattern with the Implant Mask (clear field).
6. Implant phosphorus with dose $\mathrm{Q}_{\mathrm{d}}=2 \times 10^{12} \mathrm{~cm}^{-2}$ and then etch off the photoresist.
7. Anneal to activate the second implant; the phosphorus regions remain 50 nm thick.
8. Deposit a 200 nm -thick SiO_{2} layer and pattern using the Contact Mask (dark field).
9. Deposit 200 nm of aluminum and pattern using the Metal Mask (clear field).

Given: mobilities for this problem are $\mu_{\mathrm{n}}=800 \mathrm{~cm}^{2} /(\mathrm{Vs})$ and $\mu_{\mathrm{p}}=200 \mathrm{~cm}^{2} /(\mathrm{Vs})$. The saturation electric field for electrons is $\mathrm{E}_{\mathrm{sat}}=1.25 \times 10^{4} \mathrm{~V} / \mathrm{cm}$ and their saturation velocity is $\mathrm{v}_{\text {sat }}=10^{7} \mathrm{~cm} / \mathrm{s}$. Count the "dogbone" contact areas as 0.65 square for both resistors.
(a) [4 pts.] Sketch the cross section $\boldsymbol{A} \boldsymbol{-} \boldsymbol{A}$ ' on the graph below after step 9. Identify all layers clearly.

(b) [4 pts.] What is the sheet resistance R_{\square} of the $0.2 \mu \mathrm{~m}$ long, $0.1 \mu \mathrm{~m}$ wide resistor?

$$
\mathrm{R}_{\square}=
$$

(c) [4 pts.] What is the maximum current $\mathrm{I}_{\max }$ in $\mu \mathrm{A}$ through the $0.4 \mu \mathrm{~m}$ long, $0.05 \mu \mathrm{~m}$ wide resistor?

$$
\mathrm{I}_{\max }=\quad \mu \mathrm{A}
$$

(d) [4 pts.] Plot the current-voltage curve between terminals 1 and 2 over the range indicated on the graph below

