University of California at Berkeley
 College of Engineering Dept. of Electrical Engineering and Computer Sciences
 EE 105 Midterm II

Guidelines

Closed book and notes; one $8.5 " \times 11 "$ page (both sides) of your own notes is allowed. You may use a calculator.
Do not unstaple the exam.
Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	16	
2	18	
3	16	
Total	50	

1. Junction Field-Effect Transistor (JFET) Model. [16 points].

S

A simplified large-signal model for an n-channel JFET is:
$i_{D}=\frac{2 I_{D S S}}{V_{P}{ }^{2}}\left(v_{G S}-V_{P}-\frac{v_{D S}}{2}\right) v_{D S}\left(1+\lambda_{n} v_{D S}\right)$ for $v_{D S} \leq v_{G S}-V_{P}$ and $V_{P} \leq v_{G S} \leq 0 \mathrm{~V}$ (triode)
$i_{D . S A T}=\frac{I_{D S S}}{V_{P}{ }^{2}}\left(v_{G S}-V_{P}\right)^{2}\left(1+\lambda_{n} v_{D S}\right)$ for $v_{D S} \geq v_{G S}-V_{P}$ and $V_{P} \leq v_{G S} \leq 0 \mathrm{~V}$ (saturation)
where V_{P} is the pinch-off voltage and λ_{n} is the "fudge factor."
(a) [4 pts.] Sketch the drain characteristics for this JFET on the graph below for $V_{G S}=0 \mathrm{~V},-0.5 \mathrm{~V},-1 \mathrm{~V}$, and -1.5 V . You can set $\lambda_{n}=0$ for this part. Your current values in saturation should be accurate; the triode curves can be sketched.

(b) [4 pts.] What is the numerical value of the small-signal transconductance g_{m} at the operating point $Q_{1}\left(V_{G S}=-0.5 \mathrm{~V}, V_{D S}=1.5 \mathrm{~V}\right)$? Notes: (i) λ_{n} is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.
(c) [4 pts.] What is the numerical value of the small-signal drain resistance r_{o} at the operating point $Q_{1}\left(V_{G S}=-0.5 \mathrm{~V}, V_{D S}=1.5 \mathrm{~V}\right)$. Notes: (i) λ_{n} is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.
(d) [4 pts.] What is the numerical value of the small-signal transconductance g_{m} at the operating point $Q_{2}\left(V_{G S}=-0.5 \mathrm{~V}, V_{D S}=0.5 \mathrm{~V}\right)$. Again, you don't need the plot in part (a) in order to answer this question.
2. MOSFET single stage amplifier [18 pts.]

(a) [3 pts.] Find the numerical value of channel width W in $\mu \mathrm{m}$ in order that the DC output voltage $V_{O U T}=1.25 \mathrm{~V}$. Note: the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis.
(b) [3 pts.] What is DC power dissipated in the MOSFET in $\mu \mathrm{W}$?
(c) [3 pts.] Find the numerical value of the output resistance $R_{\text {out }}$ of this amplifier in $\mathrm{k} \Omega$. If you couldn't solve part (a), you can assume for this part that the channel width $W=100 \mu \mathrm{~m}$ (not the correct answer to (a), of course.)
(d) [3 pts.] Find the numerical value of the two-port parameter A_{v}, the open-circuit voltage gain, for this amplifier. Again, if you couldn't solve part (a), you can assume for this part that the channel width $W=100 \mu \mathrm{~m}$ (not the correct answer to (a), of course.)
(e) [3 pts.] Find the overall voltage gain $v_{\text {out }} / v_{s}$ with R_{S} and R_{L} present (values of which are given next to the schematic on the previous page). If you couldn't solve (c) or (d), you can assume for this part that $R_{\text {out }}=2.5 \mathrm{k} \Omega$, and $A_{v}=0.85$. Needless to say, these are not correct answers to either (c) or (d).
(f) [3 pts.] We now remove the small-signal source and its resistance and replace it with a large-signal source $v_{I N}$; we also remove the load resistor. Assuming the MOSFET remains in the saturation (constant-current) region and neglecting channel-length modulation ($\lambda_{n}=0$), find an equation for $v_{I N}$ in terms of $v_{\text {OUT. }}$. If you couldn't solve part (a), you can assume that $W=100 \mu \mathrm{~m}$ for this part.

What is the numerical value of $v_{I N}$ for the case when $v_{\text {OUT }}=2 \mathrm{~V}$?
3. npn bipolar transistors [16 pts.]

Given:
Base width $=W_{B}=100 \mathrm{~nm}=0.1 \mu \mathrm{~m}$
Emitter-base junction area $=A_{E}=5 \mu \mathrm{~m}^{2}$
Emitter width $=W_{E}=75 \mathrm{~nm}=0.075 \mu \mathrm{~m}$
Base-collector junction area $=A_{C}=15 \mu \mathrm{~m}^{2}$
Electron diffusion constant in base: $D_{n}=20 \mathrm{~cm}^{2} / \mathrm{s}$
Hole diffusion constant in emitter: $D_{p}=5 \mathrm{~cm}^{2} / \mathrm{s}$
Electron charge: $-q=-1.6 \times 10^{-19} \mathrm{C}$
Intrinsic concentration: $n_{i}=10^{10} \mathrm{~cm}^{-3}$
$V_{t h}=26 \mathrm{mV}$
(a) [4 pts.] Find the numerical value of the electron diffusion current density $J_{n B}$ in the base [units $\mu \mathrm{A} / \mu^{2}$]. Neglect the base current I_{B} for this part.
(b) [4 pts.] What is the numerical value of $n_{p B}(x=0)$, the minority electron concentration in the base at the edge of the emitter-base depletion region? Again, you can neglect the base current I_{B} for this part.
(c) [3 pts.] Find the numerical value of $V_{\text {OUT }}$ to 3 significant figures. The base doping is $N_{a B}=1 \times 10^{17} \mathrm{~cm}^{-3}$. You can neglect the base current for this part, too.
(d) [4 pts.] We now increase V_{B} above 2 V to the point where the minority carrier concentrations in the bipolar transistor are given by the plot below. The value of $n_{p B}(0)$ is unchanged from parts (b) and (c). What is the value of V_{B} to 3 significant figures? Note: if you can't find the exact value, the answer to 2 significant figures is worth 2 pts.

