University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm II

Spring 2002

Prof. Roger T. Howe

April 17, 2002

Your Name (Last, First)

Guidelines

Closed book and notes; one 8.5" x 11" page (both sides) of *your own notes* is allowed. You may use a calculator.

Do not unstaple the exam.

Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	16	
2	18	
3	16	
Total	50	

1. Junction Field-Effect Transistor (JFET) Model. [16 points].

A simplified large-signal model for an n-channel JFET is:

$$i_{D} = \frac{2I_{DSS}}{V_{P}^{2}} (v_{GS} - V_{P} - \frac{v_{DS}}{2}) v_{DS} (1 + \lambda_{n} v_{DS}) \text{ for } v_{DS} \le v_{GS} - V_{P} \text{ and } V_{P} \le v_{GS} \le 0 \text{ V (triode)}$$

$$i_{D.SAT} = \frac{I_{DSS}}{V_P^2} (v_{GS} - V_P)^2 (1 + \lambda_n v_{DS}) \text{ for } v_{DS} \ge v_{GS} - V_P \text{ and } V_P \le v_{GS} \le 0 \text{ V (saturation)}$$

where V_P is the pinch-off voltage and λ_n is the "fudge factor."

(a) [4 pts.] Sketch the drain characteristics for this JFET on the graph below for $V_{GS} = 0$ V, -0.5 V, -1 V, and -1.5 V. You can set $\lambda_n = 0$ for this part. Your current values in saturation should be accurate; the triode curves can be sketched.

(b) [4 pts.] What is the numerical value of the small-signal transconductance g_m at the operating point Q_1 ($V_{GS} = -0.5$ V, $V_{DS} = 1.5$ V)? Notes: (i) λ_n is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.

(c) [4 pts.] What is the numerical value of the small-signal drain resistance r_o at the operating point Q_1 ($V_{GS} = -0.5$ V, $V_{DS} = 1.5$ V). Notes: (i) λ_n is not zero for this part, (ii) you don't need the plots in part (a) in order to answer this question.

(d) [4 pts.] What is the numerical value of the small-signal transconductance g_m at the operating point Q_2 ($V_{GS} = -0.5$ V, $V_{DS} = 0.5$ V). Again, you don't need the plot in part (a) in order to answer this question.

2. MOSFET single stage amplifier [18 pts.]

(a) [3 pts.] Find the numerical value of channel width W in μ m in order that the DC output voltage $V_{OUT} = 1.25$ V. *Note*: the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis.

(b) [3 pts.] What is DC power dissipated in the MOSFET in μ W?

(c) [3 pts.] Find the numerical value of the output resistance R_{out} of this amplifier in k Ω . If you couldn't solve part (a), you can assume for this part that the channel width $W = 100 \ \mu m$ (not the correct answer to (a), of course.)

(d) [3 pts.] Find the numerical value of the two-port parameter A_{ν} , the open-circuit voltage gain, for this amplifier. Again, if you couldn't solve part (a), you can assume for this part that the channel width $W = 100 \mu m$ (not the correct answer to (a), of course.)

(e) [3 pts.] Find the overall voltage gain v_{out} / v_s with R_s and R_L present (values of which are given next to the schematic on the previous page). If you couldn't solve (c) or (d), you can assume for this part that $R_{out} = 2.5 \text{ k}\Omega$, and $A_v = 0.85$. Needless to say, these are not correct answers to either (c) or (d).

(f) [3 pts.] We now remove the small-signal source and its resistance and replace it with a large-signal source v_{IN} ; we also remove the load resistor. Assuming the MOSFET remains in the saturation (constant-current) region and neglecting channel-length modulation ($\lambda_n = 0$), find an equation for v_{IN} in terms of v_{OUT} . If you couldn't solve part (a), you can assume that $W = 100 \mu m$ for this part.

What is the numerical value of v_{IN} for the case when $v_{OUT} = 2$ V?

3. npn bipolar transistors [16 pts.]

(a) [4 pts.] Find the numerical value of the electron diffusion current density J_{nB} in the base [units $\mu A/\mu m^2$]. Neglect the base current I_B for this part.

(b) [4 pts.] What is the numerical value of $n_{pB}(x = 0)$, the minority electron concentration in the base at the edge of the emitter-base depletion region? Again, you can neglect the base current I_B for this part.

(c) [3 pts.] Find the numerical value of V_{OUT} to 3 significant figures. The base doping is $N_{aB} = 1 \times 10^{17} \text{ cm}^{-3}$. You can neglect the base current for this part, too.

(d) [4 pts.] We now increase V_B above 2 V to the point where the minority carrier concentrations in the bipolar transistor are given by the plot below. The value of $n_{pB}(0)$ is unchanged from parts (b) and (c). What is the value of V_B to 3 significant figures? *Note*: if you can't find the exact value, the answer to 2 significant figures is worth 2 pts.

