University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm I

Spring 2002

Prof. Roger T. Howe

March 6, 2002

Your Name: _____

Student ID Number: _____

Guidelines

Closed book and notes; one 8.5" x 11" page (both sides) of *your own notes* is allowed. You may use a calculator.

Do not unstaple the exam.

Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	<i>Points</i> Possible	Score
1	17	
2	17	
3	16	
Total	50	

1. IC resistors [17 points]

Process Sequence:

- 1. *Starting material*: p-type silicon wafer with a doping concentration of 1×10^{17} cm⁻³
- 2. Deposit a 250 nm-thick SiO₂ layer
- 3. Deposit a 250 nm-thick layer of n-type polysilicon and pattern using the **Polysilicon** Mask (clear field).
- 4. Pattern the oxide using the **Oxide Mask** (dark field). 5. Implant phosphorus with dose $Q_d = 5 \ge 10^{12} \text{ cm}^{-2}$ and anneal to form a 250 nm-thick phosphorus-doped region.
- 6. Deposit a 250 nm-thick SiO₂ layer and pattern using the **Contact Mask** (dark field).
- 7. Deposit 250 nm of aluminum and pattern using the Metal Mask (clear field).

Given: mobilities for this problem are $\mu_n = 500 \text{ cm}^2/(\text{Vs})$ and $\mu_p = 200 \text{ cm}^2/(\text{Vs})$ for both silicon and polysilicon). The saturation electric field for electrons in polysilicon or silicon is $E_{sat} = 2 \times 10^4 \text{ V/cm}$ and their saturation velocity is $v_{sat} = 10^7 \text{ cm/s}$. The mobile electron concentration in the polysilicon is $n = 10^{17} \text{ cm}^{-3}$ at the end of the process. Count the "dogbone" contact areas as 0.65 square each and the corner square as 0.56 squares in finding the resistance.

(a) [5 pts.] Sketch the cross section *A*-*A*' on the graph below **after step 7**. Identify all layers clearly.

(b) [3 pts.] What is the sheet resistance R of the 0.25 µm-thick silicon region formed in step 5?

R =

(c) [3 pts.] What is the maximum current I_{max} in μ A through the polysilicon resistor?

(d) [3 pts.] Plot the current-voltage curve between terminals 1 and 2 over the range indicated on the graph below. Use the mask layout to determine the number of squares of each resistor; there is no need to account for the spreading of dopants during annealing.

(e) [3 pts.] The total voltage between terminals 1 and 2 is:

 $v_{12}(t) = V_{DC} + v_{ac} \cos(\mathbf{w}t)$

with $V_{DC} = 7.5$ V and $v_{ac} = 5$ mV. What is the small-signal component of the current between terminals 1 and 2?

 $i_{12}(t) =$

2. MOS charge-storage element [17 pts.]

The MOS structure shown in cross section and top view above has a metal gate and two bottom electrodes, B₁ (p substrate) and B₂ (n⁺ layer). The bottom electrodes are contacted by a metal line and shorted together, as indicated on the top view. The oxide thickness is $t_{ox} = 11.5$ nm for the MOS structure and the oxide permittivity is $\varepsilon_{ox} = 3.45 \times 10^{-13}$ F/cm.

In region 1, the p-type substrate is the bottom electrode and the MOS parameters are:

$$V_{FB} = -1.2 \text{ V}, V_{Tn} = 0.8 \text{ V}$$

In region 2, the n⁺ layer is the bottom electrode and the MOS parameters are:

$$V_{FB} = -0.2 \text{ V}, V_{Tp} = -3 \text{ V}$$

The charge storage curves for the two regions are provided on the graphs below of gate charge per unit area versus the gate-bottom electrode potential, v_{GB} . Since $B_1 = B_2$, we use "B" to represent the potential of the bottom electrode for each region.

(a) [4 pts.] For $v_{GB} = 1$ V, find the total charge on the gate (units: femtoCoulombs = 10^{-15} C).

$q_{G,Total} =$	fC

(b) [4 pts.] For $v_{GB} = -1.5$ V, identify the *substrate* charge in regions 1 and 2 by circling the correct description(s). Note: the correct answer may have more than one item circled.

(c) [4 pts.] For $v_{GB} = +1.5$ V, identify the substrate charge in regions 1 and 2 by circling the correct description(s). Note: the correct answer may have more than one item circled.

Region 1.	ionized acceptors	accumulated holes	inversion-layer electrons
Region 2.	ionized donors	accumulated electrons	s inversion-layer holes

(d) [3 pts.] If we apply a voltage $v_{GB}(t) = 0 \text{ V} + v_{gb}\cos(\omega t)$, where $v_{gb}=5 \text{ mV}$ and $\omega = 2\pi (10^6)$ rad/s, find the current $i_{gb}(t)$ into the gate terminal in nA from the charge-storage curves.

(e) [2 pts.] The maximum capacitance of the MOS structure is C_{max} . If the DC component of v_{GB} is 1.5 V, what is the maximum amplitude of its small-signal component $v_{gb}(t)$ for which the current remains exactly proportional to C_{max} .

3. Impedance measurements [16 pts.]

The capacitance C = 1 pF and the resistance $R = 1000 \Omega$.

(a) [4 pts.] Find an expression for the impedance $Z = V / I_s$. Your result should contain the term $(1 + j \omega \tau)$.

(b) [4 pts.] Sketch the magnitude Bode plot for the impedance Z (units: $20 \log_{10}(\Omega)$) on the graph below using straight-line approximations.

(c) [4 pts.] Sketch the phase of the impedance Z (units: degrees) on the graph below using straight-line approximations.

(d) [4 pts.] You hook up another two-terminal circuit and measure its impedance. The Bode plots of the magnitude and the phase of Z are plotted below.

If a phasor current $I_s = (2.5 \text{ mA})e^{j0^\circ}$ at a frequency of 10^8 rad/sec, what is the voltage waveform v(t) based on the information in the Bode plots?