University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EE 105 Midterm I

Your Name: \qquad
Student ID Number: \qquad

Guidelines

Closed book and notes; one $8.5 " \times 11 "$ page (both sides) of your own notes is allowed. You may use a calculator.
Do not unstaple the exam.
Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	17	
2	17	
3	16	
Total	50	

1. IC resistors [17 points]

Process Sequence:

1. Starting material: p-type silicon wafer with a doping concentration of $1 \times 10^{17} \mathrm{~cm}^{-3}$
2. Deposit a 250 nm -thick SiO_{2} layer
3. Deposit a 250 nm -thick layer of n-type polysilicon and pattern using the Polysilicon Mask (clear field).
4. Pattern the oxide using the Oxide Mask (dark field).
5. Implant phosphorus with dose $Q_{d}=5 \times 10^{12} \mathrm{~cm}^{-2}$ and anneal to form a 250 nm -thick phosphorus-doped region.
6. Deposit a 250 nm -thick SiO_{2} layer and pattern using the Contact Mask (dark field).
7. Deposit 250 nm of aluminum and pattern using the Metal Mask (clear field).

Given: mobilities for this problem are $\mu_{n}=500 \mathrm{~cm}^{2} /(\mathrm{Vs})$ and $\mu_{p}=200 \mathrm{~cm}^{2} /(\mathrm{Vs})$ for both silicon and polysilicon). The saturation electric field for electrons in polysilicon or silicon is $E_{\text {sat }}=2 \times 10^{4} \mathrm{~V} / \mathrm{cm}$ and their saturation velocity is $v_{\text {sat }}=10^{7} \mathrm{~cm} / \mathrm{s}$. The mobile electron concentration in the polysilicon is $n=10^{17} \mathrm{~cm}^{-3}$ at the end of the process. Count the "dogbone" contact areas as 0.65 square each and the corner square as 0.56 squares in finding the resistance.
(a) [5 pts.] Sketch the cross section $\boldsymbol{A} \boldsymbol{-} \boldsymbol{A}$ ' on the graph below after step 7. Identify all layers clearly.

(b) [3 pts.] What is the sheet resistance R of the $0.25 \mu \mathrm{~m}$-thick silicon region formed in step 5 ?

$$
R=
$$

(c) [3 pts.] What is the maximum current $I_{\max }$ in $\mu \mathrm{A}$ through the polysilicon resistor?

$$
I_{\max }=\quad \mu \mathrm{A}
$$

(d) [3 pts.] Plot the current-voltage curve between terminals 1 and 2 over the range indicated on the graph below. Use the mask layout to determine the number of squares of each resistor; there is no need to account for the spreading of dopants during annealing.

(e) [3 pts.] The total voltage between terminals 1 and 2 is:

$$
v_{12}(t)=V_{D C}+v_{a c} \cos (\omega t)
$$

with $V_{D C}=7.5 \mathrm{~V}$ and $v_{a c}=5 \mathrm{mV}$. What is the small-signal component of the current between terminals 1 and 2 ?

$$
i_{12}(t)=
$$

2. MOS charge-storage element [17 pts.]

B_{2}

The MOS structure shown in cross section and top view above has a metal gate and two bottom electrodes, B_{1} (p substrate) and B_{2} (n^{+}layer). The bottom electrodes are contacted by a metal line and shorted together, as indicated on the top view. The oxide thickness is $t_{o x}=11.5 \mathrm{~nm}$ for the MOS structure and the oxide permittivity is $\varepsilon_{o x}=3.45 \times 10^{-13} \mathrm{~F} / \mathrm{cm}$.

In region 1, the p-type substrate is the bottom electrode and the MOS parameters are:

$$
V_{F B}=-1.2 \mathrm{~V}, V_{T_{n}}=0.8 \mathrm{~V}
$$

In region 2, the n^{+}layer is the bottom electrode and the MOS parameters are:

$$
V_{F B}=-0.2 \mathrm{~V}, V_{T p}=-3 \mathrm{~V}
$$

The charge storage curves for the two regions are provided on the graphs below of gate charge per unit area versus the gate-bottom electrode potential, $v_{G B}$. Since $\mathrm{B}_{1}=\mathrm{B}_{2}$, we use " B " to represent the potential of the bottom electrode for each region.

(a) [4 pts.] For $v_{G B}=1 \mathrm{~V}$, find the total charge on the gate (units: femtoCoulombs $=$ $10^{-15} \mathrm{C}$).
(b) [4 pts.] For $v_{G B}=-1.5 \mathrm{~V}$, identify the substrate charge in regions 1 and 2 by circling the correct description(s). Note: the correct answer may have more than one item circled.

Region 1. ionized acceptors accumulated holes inversion-layer electrons

Region 2. ionized donors accumulated electrons inversion-layer holes
(c) [4 pts.] For $v_{G B}=+1.5 \mathrm{~V}$, identify the substrate charge in regions 1 and 2 by circling the correct description(s). Note: the correct answer may have more than one item circled.

Region 1. ionized acceptors accumulated holes inversion-layer electrons

Region 2. ionized donors accumulated electrons inversion-layer holes
(d) [3 pts.] If we apply a voltage $v_{G B}(t)=0 \mathrm{~V}+v_{g b} \cos (\omega t)$, where $v_{g b}=5 \mathrm{mV}$ and $\omega=2 \pi\left(10^{6}\right) \mathrm{rad} / \mathrm{s}$, find the current $i_{g b}(t)$ into the gate terminal in nA from the charge-storage curves.
(e) [2 pts.] The maximum capacitance of the MOS structure is $C_{\max }$. If the DC compone nt of $v_{G B}$ is 1.5 V , what is the maximum amplitude of its small- signal component $v_{g b}(t)$ for which the current remains exactly proportional to $C_{\text {max }}$.
3. Impedance measurements [16 pts.]

The capacitance $C=1 \mathrm{pF}$ and the resistance $R=1000 \Omega$.
(a) [4 pts.] Find an expression for the impedance $Z=V / I_{s}$. Your result should contain the term $(1+j \omega \tau)$.
(b) $\left[4\right.$ pts.] Sketch the magnitude Bode plot for the impedance Z (units: $20 \log _{10}(\Omega)$) on the graph below using straight-line approximations.

(c) [4 pts.] Sketch the phase of the impedance Z (units: degrees) on the graph below using straight-line approximations.

(d) [4 pts.] You hook up another two-terminal circuit and measure its impedance. The Bode plots of the magnitude and the phase of Z are plotted below.

If a phasor current $I_{s}=(2.5 \mu A) e^{j 0^{\circ}}$ at a frequency of $10^{8} \mathrm{rad} / \mathrm{sec}$, what is the voltage waveform $v(t)$ based on the information in the Bode plots?

