EECS 105 - Microelectronic Devices and Circuits Spring 2001, Dept. EECS, UC Berkeley

First Midterm Exam, February 23, 2001 (53 Minutes)

Print Your Name: \qquad Solutions (see the following pages)

Sign Your Name: \qquad

Use the following parameters for MOS devices.
$I_{D n}=\left(\frac{W}{L}\right)_{p} \mu_{n} C_{O X p}\left[V_{G S}-V_{T n}-\left(V_{D S} / 2\right)\right]\left(1+\lambda_{n} V_{D S}\right) V_{D S}$
$I_{D n}=\frac{1}{2}\left(\frac{W}{L}\right)_{n} \mu_{n} C_{O X n}\left(V_{G S}-V_{T n}\right)^{2}\left(1+\lambda_{n} V_{D S}\right)$
$-I_{D p}=\left(\frac{W}{L}\right)_{p} \mu_{p} C_{O X p}\left[V_{S G}+V_{T p}-\left(V_{S D} / 2\right)\right]\left(1+\lambda_{p} V_{S D}\right) V_{S D}$
$-I_{D_{p}}=\frac{1}{2}\left(\frac{W}{L}\right)_{p} \mu_{p} C_{O X p}\left(V_{S G}+V_{T p}\right)^{2}\left(1+\lambda_{p} V_{S D}\right)$

NMOS	PMOS
İ ${ }_{n} \mathrm{C}_{0 x}=50 \mathrm{l} \mathrm{A}^{\text {A }} \mathrm{V}^{2}$	
$\mathrm{V}_{\text {TOn }}=1.0 \mathrm{~V}$	$\mathrm{V}_{\text {T0p }}=-1.0 \mathrm{~V}$
$\gamma_{\mathrm{n}}=0.6 \mathrm{~V}^{1 / 2}$	$\gamma_{p}=0.6 \mathrm{~V}^{1 / 2}$
$\ddot{\mathrm{e}}_{\mathrm{n}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1} \mathrm{~L}$ in ì m	$\mathrm{e}_{\mathrm{p}}=(0.1 / \mathrm{L}) \mathrm{V}^{-1} \mathrm{~L}$ in ì m
$\phi_{p}=-0.42$	$\phi_{n}=0.42$

are a few fundamental constants and room temperature values.
$\varepsilon_{o}=8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \quad \varepsilon_{r, o x}=3.9 \quad \varepsilon_{r, s i}=11.7$
$V_{t h}=0.026 \mathrm{eV} \quad n_{i}^{2}=2 \times 10^{20} \quad K=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$q=1.6 \times 10^{-19} \mathrm{C}$

mability	10^{15}	10^{16}	10^{17}	units
μ_{n}	1400	1200	750	$\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$
μ_{p}	500	400	350	$\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}$

Problem	Possible	Score
I	$\mathbf{2 0}$	
II	$\mathbf{3 0}$	
III	20	
IV	$\mathbf{3 0}$	
Total	$\mathbf{1 0 0}$	

EE 105 Sp 2001 A. R. Neureuther

Solutions First Midterm Exam, February 23, 2001 (53 Minutes)

I. (20 Points) Threshold Voltage

Version 2/25/01
An NMOS process produces a device with a threshold voltage $\mathrm{V}_{\mathrm{Tn}}=1 \mathrm{~V}$ and $\phi_{\mathrm{p}}=-0.42$. Complete the table below that describes the percentage change in the electrical properties listed that is produced by the change shown in the columns for the oxide thickness and doping. You must briefly explain your listed percentages with footnotes 1-6 as indicated.

Electrical Parameter	Oxide thickness $\mathbf{t}_{\mathbf{O x}}$		Substrate doping Na	
	doubles		doubles	
$\mathbf{2}_{\mathbf{p}}$	1	0%	4	$+4.3 \%$
$\mathbf{C}_{\mathbf{O x}}$	2	-50%	5	0%
$\mathbf{Q}_{\mathbf{B}, \mathbf{M A X}} / \mathbf{C}_{\mathbf{O x}}$	3	$+100 \%$	6	$+44 \%$

1) No effect
2) $\mathrm{C}_{O X}$ is inverse with $t_{O X}$
3) $C_{O X}$ decreases causes inverse $Q / C_{O X}$ increase
4) (2) $26 \mathrm{mV} \ln (2)=36 \mathrm{mV}$ or 4.3% of 840 mv
5) No effect
6) $\operatorname{Sqrt}((2 *(1.043))=1.44$ or 44%

II. (30 Points) Electrostatic and Mobile Carrier Analysis

An NMOS device is made in a p-type substrate doped $\mathrm{N}_{\mathrm{a}}=10^{+16}$ and an oxide thickness of $0.2 \mu \mathrm{~m}$. A region $0.25 \mu \mathrm{~m}$ deep under the gate is depleted.
a) (15 Points) Sketch the electric field versus position from the gate electrode. Give the quantitative value of the maximum electric field.

$$
E_{M A X}=\frac{q N_{a} x_{d}}{\varepsilon_{O X}}=\frac{1.6 \times 10^{-19} \cdot 1 \times 10^{16} \cdot 0.25 \times 10^{-4}}{3.9 \cdot 8.85 \times 10^{-14}}=1.16 \times 10^{5} \mathrm{~V} / \mathrm{cm}
$$

b) (15 Points) Find the local potential and the density of mobile electrons at the siliconoxide interface.

$$
\begin{aligned}
& \phi(x)=A\left(x-x_{p}\right)^{2} \\
& E(x)=-\frac{\partial \phi}{\partial x}=2 A\left(x-x_{p}\right) \\
& E_{x=0}=2 A x_{p} \\
& \phi(x)=\frac{E_{x=0}}{2 x_{p}}\left(x-x_{p}\right)^{2} \\
& \phi(0)=\frac{E_{x=0} x_{p}}{2}=\frac{1.16 \times 10^{5} \cdot 10^{16}}{(11.7 / 3.9) \cdot 2}=483 m V \\
& n(0)=\frac{2 x 10^{20}}{10^{16}} \exp \left(\frac{483}{26}\right)=2 \times 10^{4} \cdot 1.16 \times 10^{8}=2.3 \times 10^{12}
\end{aligned}
$$

III. (20 Points) MOS Circuits

a) (10 Points) Assuming the device is in saturation and λ_{n} $=0$, find the large-signal quantity $\mathrm{V}_{\text {OUT }}$.

$$
\begin{gathered}
I_{D}=0.5 \cdot 50 \cdot 50 \cdot(2-1)^{2}=1.25 \mathrm{~mA} \\
V_{\text {OUT }}=(2 M A-1.25 \mathrm{~mA}) \cdot 5 \mathrm{k} \Omega=3.75 \mathrm{~V}
\end{gathered}
$$

b) (10 Points) Find the small-signal gain $v_{\text {OUT }} / v_{\text {IN }}$ for the circuit in part a) when $\lambda_{n}=0$.

$g_{m}=50 \cdot 50 \cdot(2-1)=2.5 m S$
$V_{\text {OUT }}=-g_{m} R_{L}=-2.5 m S \cdot 5 k \Omega=-12.5$

IV. (30 Points) Advanced MOS Circuits

a) (7 Points) A resistor R_{S} is inserted as shown and has a value such that $\mathrm{V}_{\mathrm{S}}=0.5 \mathrm{~V}$. Find the large-signal quantity $V_{\text {OUT }}$ when $\lambda_{n}=0$.

$$
V_{T}=1+0.6(\sqrt{0.5+0.84}-\sqrt{0.84})=1.145 \mathrm{~V}
$$

$$
\begin{aligned}
& I_{D}=0.5 \cdot 50 \cdot 50 \cdot(2-0.5-1.145)^{2}=0.158 \mathrm{~mA} \\
& V_{\text {OUT }}=(2 m A-0.158 \mathrm{~mA}) \cdot 5 \mathrm{k} \Omega=9.21 \mathrm{~V}
\end{aligned}
$$

b) (14 Points) Draw the small-signal equivalent circuit of the circuit in part a) and give quantitative values for each element in the circuit when $\lambda_{n}=0$.

$$
\begin{gathered}
g_{m}=50 \cdot 50(2-0.5-1.145)=0.89 \mathrm{mS} \\
g_{m b}=\frac{0.6 \cdot 0.89 \mathrm{mS}}{2 \cdot \sqrt{0.84+0.5}}=0.23 \mathrm{mS} \\
R_{S}=\frac{0.5 \mathrm{~V}}{0.158 \mathrm{~mA}}=3.16 \mathrm{~K} \Omega
\end{gathered}
$$

c) (9 Points) Write a sufficient set of equations to determine the small-signal gain $v_{\text {OUT }} / v_{\text {IN }}$ when $\lambda_{n}=0$. Solve for the gain if you have completed all other questions on this exam.

$$
\begin{aligned}
& V_{i n}=V_{g s}-V_{b s} \\
& g_{m} v_{g s}+g_{m b} v_{b s}+\frac{v_{b s}}{R_{s}}=0 \\
& V_{\text {OUT }}=-\left(g_{m} v_{g s}+g_{b s} v_{b s}\right) R_{L} \\
& \frac{V_{\text {OUT }}}{\operatorname{Vin}}=\frac{-\left(R_{L} / R_{S}\right)}{\left(1+\frac{g_{m b}}{g_{m}}+\frac{1}{g_{m} R_{S}}\right)}
\end{aligned}
$$

Use the second equation to find v_{gs} in terms of v_{bs} and then substitutes in the first equation to get $v_{b s}$ in terms of $v_{\text {in. }}$. Now go backwards and get v_{gs} and then substitute both into the third equation.

