University of California at Berkeley

University of California at Berkeley

College of Engineering

Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm II

Spring 2000

Prof. Roger T. Howe

April 18, 2000

Your Name (Last, First)

Guidelines

IMPORTANT: your LOWEST SCORE WILL BE THROWN OUT and your total Will be calculated as follows:

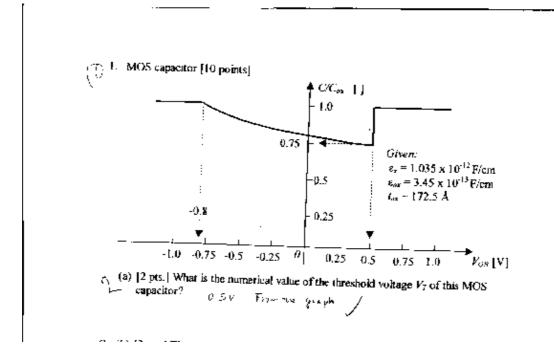
Total = (50/40)X(Sum of 4 highest scores).

Closed book and notes, one 8.5"X11" page (both sides) of your own notes is allowed.

You may use a calculator.

Do not unstaple the exam.

Show all your work and reasoning on the exam in order to receive full or partial credit.

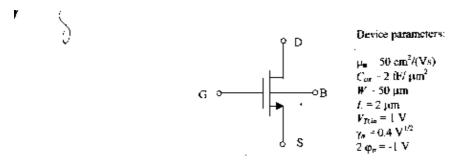

Score

Problem	Points Possible	Score
1	10	
2	10	
3	10	
4	10	

University of California at Berkeley

5	10
Total	50

1. MOS capacitor [10 points]

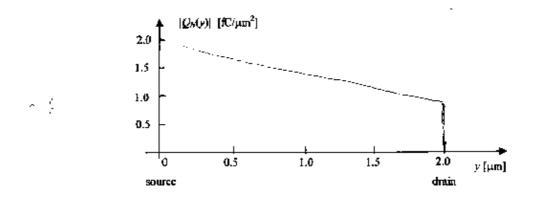

(a) [2 pts.] What is the numerical value of the threshold voltage VT of this MOS capacitor?

(b) [2 pts.] The area of the MOS capacitor is 15 um X 15 um: What is the capacitance (units: fF) when $V_{GB} = 0.75V$?

(c) [3 pts.] What is the numerical value of the depletion (bulk) capacitance C_b for this15 um X 15 um capacitor (units: fF) when V_{GB} = 0.475 V?

(d) [3 pts.] What is the numerical value of the inversion charge Q_{inv} (units: Coulombs) for this 15 um X 15 um MOS capacitor when $V_{GB} = 1V$?

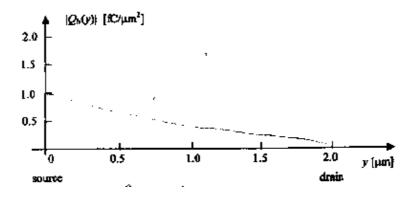
2. MOS Transistors [10 points]



(a) [2 pts] At the operating point

 $(V_{GB} = 2V, V_{DS} = 0.5 V, \text{ and } V_{BS} = 0 V)$

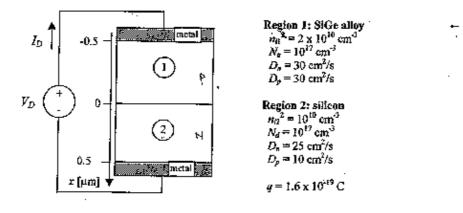
In what region of operation is the MOSFET? Circle one: cutoff saturation triode


(b) [3 pts.] Sketch the magnitude of the channel charge $|Q_N(y)|$ from source (y=0) to drain (y=L) for the operating point in part (a) on the graph below. Your values at the ends of the channel should be numerically accurate

(c) [3 pts.] Sketch the magnitude of the channel charge $|Q_N(y)|$ from source (y=0) to drain (y=L) for the following operating point on the graph below.

$$(V_{GS} = 1.5 \text{ V}, \text{V}_{DS} = 0.5 \text{ V}, \text{ and } \text{V}_{BS} = 0 \text{ V})$$

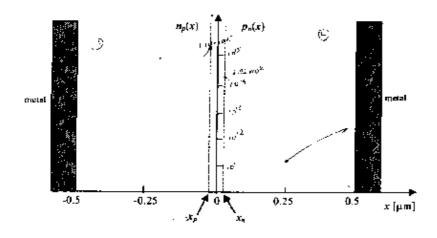
Your values at the ends of the channel should be numerically accurate.



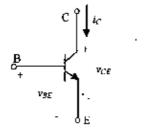
(d) [2 pts.] For the new operating point:

$$(V_{GS} = 1.5 \text{ V}, \text{V}_{DS} = 0.1 \text{ V}, \text{ and } \text{V}_{BS} = 0 \text{ V})$$

Find the numerical value of the drift velocity of electrons in the channel in cm/s.


3. pn Heterojunction Diode Currents [10 points]

(a) [2 pts.] What are the numerical values of the hole and electron concentrations at the depletion region edge in region 1, for a forward bias of VD = 0.660 V? You can assume that the law of the junction still applies to this "heterojunction diode;" however, you must use the correct value for the intrinsic concentration in this region.


(b) [2 pts.] What are the numerical values of the hole and electron concentrations at the depletion region edge in region 2, for a forward bias of VD = 0.660 V? You can assume that the law of the junction still applies to this "heterojunction diode;" however, you must use the correct value for the intrinsic concentration in this region.

(c) [3 pts.] Sketch the minority carrier concentrations in region 1 and region 2, for a forward bias of $V_D = 0.660 \text{ V}$. You should label the numerical values for the minority electron and hole concentrations at the depletion edges $x = -x_p$ and $x = x_n$. If you couldn't solve parts (a) and (b), you can assume that the minority carrier concentrations are both 10^{15} cm^{-3} at the depletion region edges - not the correct answer to (a) and (b), needless to say.

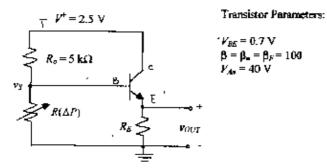
(d) [3 pts.] What fraction of the diode current is from the hole diffusion current on the n-side of hte diode? You can neglect the width of the depletion region in finding the diffusion currents.

4. New Bipolar Transistor Model [10 points]

For high currents, a better model for the bipolar transistor in the forward-active region is:

$$iC = IS2e^{V_{BE}/2V}th(1 + VCE/V_{A2})^3$$

The high-current saturation current and Early voltage are $I_{S2} = 10^{-8}$ A and $V_{A2} = 30$ V; $V_{th} = 26$ mV.

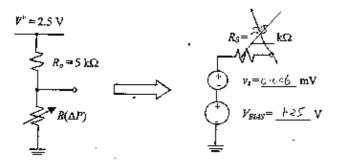

(a) [2 pts.] Find the numerical value of the DC base-emitter voltage V_{BE} for iC = 116 mA and VCE = 1.5V.

(b) [4 pts.] Find the numerical value of the small-signal transconductance gm at the operating point in part (a) in S= $1/\Omega$

(c) [4 pts.] Find the numerical value of the small-signal collector-emitter resistance ro at the operating point in part (a) in Ω

5. Bipolar Transistor Interface Amplifier [10 points]

University of California at Berkeley


The variable resistor is a function of pressure, with

 $R(\Delta P) = R_o + K\Delta P = 5k\Omega + (25\Omega / atm) \cdot \Delta P$, where the pressure change is in atmospheres (atm).

(a) [2 pts.] For $\mathbb{R} = 0$ and neglecting the DC base current IB, find the numerical value of RE such that the DC collector current Ic = 75 Å. Note that $\mathbb{R}(\mathbb{R}) = \mathbb{R}_0 = 5$ k@ince $\mathbb{R} = 0$.

(b) [2 pts.] Neglecting the base current, what is the change in the voltage Vs when the pressure change is $\mathbf{R} = 2$ atm, compared to the case when $\mathbf{R} = 0$.

(c) [3 pts.] Fill in the blanks for the circuit model for the input DC voltage V_{BLAS} , the small signal voltage VS, and the source resistance Rs that models the pressure-sensing resistor divider with a pressure change of $\mathbf{R} = 2$ atm.

(d) [3 pts.] Using the two-port model for this bipolar amplifier stage, find the numerical value of the small-signal output voltage Vout for a pressure change of $\mathbf{R} = 2$ atm. If you couldn't solve part (c), you can assume for this part that Rs= 1 K Ω Vs= 3 mV, and VBLAS = 1 V for this part (all of these are incorrect answer to (c), of course.)