# University of California at Berkeley 

University of California at Berkeley
College of Engineering
Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm II

## Guidelines

## IMPORTANT:your LOWEST SCORE WILL BE THROWN OUT and your total

 Will be calculated as follows:
## Total $=(50 / 40)$ X(Sum of 4 highest scores).

Closed book and notes, one $8.5^{\prime \prime} \mathrm{X11}$ " page (both sides) of your own notes is allowed.
You may use a calculator.
Do not unstaple the exam.
Show all your work and reasoning on the exam in order to receive full or partial credit.

## Score

| Problem | Points Possible | Score |
| :---: | :---: | :---: |
| 1 | 10 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |


| 5 | 10 |
| :---: | :---: |
| Total | 50 |

1. MOS capacitor [ 10 points]

(a) [2 pts.] What is the numerical value of the threshold voltage $V T$ of this MOS capacitor?
(b) [2 pts.] The area of the MOS capacitor is 15 um X 15 um : What is the capacitance (units: fF ) when $V_{G B}=0.75 \mathrm{~V}$ ?
(c) [3 pts.] What is the numerical value of the depletion (bulk) capacitance $\mathbf{C b}$ for this15 um X 15 um capacitor (units: fF) when $\mathrm{VGB}_{\mathrm{GB}}=\mathbf{0 . 4 7 5} \mathrm{V}$ ?
(d) [3 pts.] What is the numerical value of the inversion charge $Q_{\text {inv }}$ (units: Coulombs) for this $\mathbf{1 5} \mathbf{u m ~} \mathbf{X}$ 15 um MOS capacitor when $V_{G B}=1 \mathrm{~V}$ ?

## 2. MOS Transistors [10 points]

r

(a) [2 pts] At the operating point

$$
\left(V_{G B}=2 \mathrm{~V}, V_{D S}=0.5 \mathrm{~V}, \text { and } V_{B S}=0 \mathrm{~V}\right)
$$

In what region of operation is the MOSFET? Circle one: cutoff saturation triode
(b) [3 pts.] Sketch the magnitude of the channel charge $\left|Q_{N}(y)\right|$ from source $(y=0)$ to drain $(y=L)$ for the operating point in part (a) on the graph below. Your values at the ends of the channel should be numerically accurate

(c) [3 pts.] Sketch the magnitude of the channel charge $\left|Q_{N}(\mathbf{y})\right|$ from source $(\mathrm{y}=0)$ to drain $(\mathrm{y}=\mathrm{L})$ for the following operating point on the graph below.

$$
\begin{aligned}
& \text { University of California at Berkeley } \\
& \left(\boldsymbol{V}_{\boldsymbol{G} S}=\mathbf{1 . 5} \mathbf{V}, \mathbf{V}_{\boldsymbol{D} S}=\mathbf{0 . 5} \mathbf{~ V} \text {, and } \mathbf{V}_{\boldsymbol{B} S}=\mathbf{0} \mathbf{~ V}\right)
\end{aligned}
$$

Your values at the ends of the channel should be numerically accurate.

(d) $[2$ pts.] For the new operating point:

$$
\left(V_{G S}=1.5 \mathrm{~V}, \mathrm{~V}_{D S}=0.1 \mathrm{~V}, \text { and } \mathrm{V}_{B S}=0 \mathrm{~V}\right)
$$

Find the numerical value of the drift velocity of electrons in the channel in $\mathrm{cm} / \mathrm{s}$.
3. pn Heterojunction Diode Currents [10 points]

(a) [2 pts.] What are the numerical values of the hole and electron concentrations at the depletion region edge in region 1, for a forward bias of $V D=0.660 \mathrm{~V}$ ? You can assume that the law of the junction still applies to this "heterojunction diode;" however, you must use the correct value for the intrinsic concentration in this region.
(b) [2 pts.] What are the numerical values of the hole and electron concentrations at the depletion region edge in region 2, for a forward bias of $V D=0.660 \mathrm{~V}$ ? You can assume that the law of the junction still applies to this "heterojunction diode;" however, you must use the correct value for the intrinsic concentration in this region.
(c) [ $\mathbf{3}$ pts.] Sketch the minority carrier concentrations in region 1 and region 2 , for a forward bias of $V_{D}$ $=0.660 \mathrm{~V}$. You should label the numerical values for the minority electron and hole concentrations at the depletion edges $x=-x_{p}$ and $x=x n$. If you couldn't solve parts (a) and (b), you can assume that the minority carrier concentrations are both $1015 \mathrm{~cm}^{-3}$ at the depletion region edges - not the correct answer to (a) and (b), needless to say.

(d) [ $\mathbf{3}$ pts.] What fraction of the diode current is from the hole diffusion current on the $\mathbf{n}$-side of hte diode? You can neglect the width of the depletion region in finding the diffusion currents.

## 4. New Bipolar Transistor Model [10 points]



For high currents, a better model for the bipolar transistor in the forward-active region is:

$$
\mathrm{i} C=I S 2 \mathrm{e}^{\mathrm{V}} \mathrm{~V}_{B E} / 2 \mathrm{~V}_{t h}\left(1+\mathrm{V} C E / \mathrm{V}_{A 2}\right)^{3}
$$

The high-current saturation current and Early voltage are $I_{S 2}=10^{-8} A$ and $V_{A 2}=30 \mathrm{~V} ; \mathrm{V}_{t h}=\mathbf{2 6} \mathbf{m V}$.
(a) [2 pts.] Find the numerical value of the DC base-emitter voltage $\mathrm{V}_{B E}$ for $\mathrm{i} C=116 \mathrm{~mA}$ and $\mathrm{VCE}=$ 1.5 V .
(b) [4 pts.] Find the numerical value of the small-signal transconductance $\mathbf{g m}$ at the operating point in part (a) in $S=1 / \Omega$
(c) [4 pts.] Find the numerical value of the small-signal collector-emitter resistance $r o$ at the operating point in part (a) in $\Omega$

## 5. Bipolar Transistor Interface Amplifier [10 points]



Transistor Parameters:
${ }^{\cdot} V_{B E}=0.7 \mathrm{~V}$
$\beta=\beta_{=}=\beta_{F}=10 \mathrm{~kJ}$
$V_{A}=40 \mathrm{~V}$

The yariable resizitor is a function of pressure. with

$$
R(\Delta P)=R_{0}+K \Delta P=5 \mathrm{KQ}+(25 \Omega / a m) \cdot \Delta P
$$

where the pressone change is in atroospheres (atm).
(a) [2 pts.] For $\mathbf{B}=0$ and neglecting the DC base current $\mathrm{I} B$, find the numerical value of $\mathrm{R} E$ such that the $D C$ collector current $I C=75 \mathrm{~A}$. Note that $R(B)=R o=5 \mathrm{k}$ Since $B=0$.
(b) [ 2 pts.] Neglecting the base current, what is the change in the voltage $V s$ when the pressure change is $B=2 \mathrm{~atm}$, compared to the case when $\mathbf{B}=0$.
(c) [3 pts.] Fill in the blanks for the circuit model for the input DC voltage Vblas, the small signal voltage VS, and the source resistance Rs that models the pressure-sensing resistor divider with a pressure change of $\mathbf{B}=\mathbf{2} \mathrm{atm}$.

(d) [3 pts.] Using the two-port model for this bipolar amplifier stage, find the numerical value of the small-signal output voltage Vout for a pressure change of $\mathbf{B}=2 \mathrm{~atm}$. If you couldn't solve part (c), you can assume for this part that $\mathrm{Rs}=1 \mathrm{~K} \Omega \mathrm{Vs}=\mathbf{3} \mathbf{m V}$, and VBLAS $=\mathbf{1} \mathrm{V}$ for this part (all of these are incorrect answer to (c), of course.)

