University of California at Berkeley

College of Engineering
Department of Electrical Engineering and Computer Sciences

R.T. Howe, Fall 1997

SECS 105
Midterm 2: November 19, 1997

- Closed book and notes; one $8.5^{\prime \prime}$ X 11 "formula sheet (both sides)
- Do all work on exam pages
- You have 80 minutes; use your time wisely!
- Default BJT parameters:
$\mathrm{npn}: \mathrm{B}_{\mathrm{o}}=100, \mathrm{~V}_{\mathrm{An}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}, \text { sat }}=0.2 \mathrm{~V}$
- Default MOSFET parameters: note that λ depends on L!

MOS: $\bullet_{n} \mathrm{C}_{\mathrm{ox}}=50 \cdot \mathrm{AV}^{-2}, \lambda_{\mathrm{n}}=[0.1 / \mathrm{L}] \mathrm{V}^{-1}(\mathrm{Lin} \cdot \mathrm{m}) \mathrm{V}_{\mathrm{Tn}}=1 \mathrm{~V}$
PMOS: $\bullet_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=25 \cdot \mathrm{AV}^{-2}, \lambda_{\mathrm{p}}=[0.1 / \mathrm{L}] \mathrm{V}^{-1}(\mathrm{Lin} \cdot \mathrm{m}) \mathrm{V}_{\mathrm{Tp}}=-1 \mathrm{~V}$

1. BiCMOS Voltage Amplifier [19 points]

(a) [3 pts.] What is the numerical value of the DC voltage $\mathrm{V}_{\mathrm{G} 2}$ at the stage of the transistor M_{2}, given that the DC output voltage $\mathrm{V}_{\mathrm{out}}=0 \mathrm{~V}$? Note that $\mathrm{V}_{\mathrm{SG} 2}$ is given.
(b) [3 pts.] Find the width of the transistor M_{1} in $\bullet \mathrm{m}$ such that $-\mathrm{I}_{\mathrm{D} 1}=\mathrm{I}_{\mathrm{SUP} 1}=250 \cdot \mathrm{~A}$, with M_{1} operating in the constant-current region (MOSFET saturation). Neglect channellength modulation for this DC Hand-calculation.
(c) $[3$ pts.] Draw the two port models for each stage of this three stage voltage amplifier. You do not need to evaluate parameters of the models.
(d) [5 pts.] Find the numerical value of the output resistance $\mathrm{R}_{\text {out }}$ of this amplifier. Your answer need only be correct to within $\pm 5 \%$ for full credit.
(e) [5 pts.] Find the numerical value of the voltage gain $A_{v}\left(\mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{R}_{\mathrm{L}}=\infty \Omega\right)$. If you If you couldn't answer part (b), you can assume for this part that $\mathrm{W}_{1}=100 \cdot \mathrm{~m}$. Your answer need only be correct to within $\pm 5 \%$ for full credit.
2. Dynamic Logic Gate [15 points]

(a) [4 pts.] With a fanout of zero (no gates coneected to the output F), the load capacitance is equal to the parasitic capacitance. Find the numerical value of the parasitics capacitance C ,sub>p for the case where a $50 \bullet \mathrm{~m}$-long wire is attached to F . Identify (by circling them), those transistors that contribuate to the drain-bulk capacitance C_{DB}.
(b) [4 pts.] Find the numerical value of the precharge $t_{\text {PLH }}$ of this dunamic logic gate. If you couldn't solve part (a), you can assume that $C_{p}=C_{L}=100 \mathrm{fF}$ for this part.
(c) $[4$ pts. $]$ Find the numerical value of the worst case evaluation time $t_{\text {PHL }}$ of this dynamic logic gate. If you couldn't solve part (a), you can assume that $C_{p}=C_{L}=100 \mathrm{fF}$ for this part
(d) [3 pts.] Find a logical expression F in terms of the inputs A, B, C, D, and E. There is no need to simplify the expression.

3. MOSFET Current Source [16 points]

(a) [3 pts.] In the above schematic, the dotted box contains the amplifier towhich the current supply is attached. We want the DC supply to be $\mathrm{I}_{\text {SUP }}=50 \bullet \mathrm{~A}$. What is the required width of transistor M_{2} in $\bullet \mathrm{m}$?
(b) [3 pts.] Find the numerical value of the small-signal source resistance $r_{o c}$ of this current source. Note that r_{oc} is indicated on the schematic.
(c) $[3$ pts. $]$ Find the numerical value of the gate voltage $V_{\mathrm{G} 2}$ of transistor M_{2}.
(d) [4 pts.] Plot $i_{\text {sup }}$ vs $v_{\text {sup }}$ characteristics on the axes below. Your values for $V_{\text {sup, min }}$ and $I_{\text {sup }}$ should be numerically accurate. There is no need to include channellength modulation effects on your plot.
(e) [3 pts.] We would like to obtain a source resistance of $2 \mathrm{M} \Omega$. Find the width and length of transistor M_{2} needed to achieve this goal without changing $\mathrm{I}_{\text {sup }}$

