University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

R.T. Howe, Fall 1997

EECS 105 Midterm 2: November 19, 1997

- · Closed book and notes; one 8.5" X 11 "formula sheet (both sides)
- \cdot Do all work on exam pages
- · You have 80 minutes; use your time wisely!
- · Default BJT parameters:

npn: $B_0 = 100$, $V_{An} = 0.7$ V, $V_{CE,sat} = 0.2$ V

 \cdot Default MOSFET parameters: note that λ depends on L!

NMOS: $\bullet_n C_{ox} = 50 \bullet AV^{-2}$, $\lambda_n = [0.1/L]V^{-1}$ (Lin $\bullet m$) $V_{Tn} = 1 V$

PMOS: $\bullet_{p}C_{ox} = 25 \bullet AV^{-2}, \lambda_{p} = [0.1/L]V^{-1} (Lin \bullet m) V_{Tp} = -1 V$

1. BiCMOS Voltage Amplifier [19 points]

(a) [3 pts.] What is the numerical value of the DC voltage V_{G2} at the stage of the transistor M_2 , given that the DC output voltage $V_{out} = 0$ V? Note that V_{SG2} is given.

(b) [3 pts.] Find the width of the transistor M_1 in •m such that $-I_{D1} = I_{SUP1} = 250 \cdot A$, with M_1 operating in the constant-current region (MOSFET saturation). Neglect channel-length modulation for this DC Hand-calculation.

(c) [3 pts.] Draw the two port models for each stage of this three stage voltage amplifier. You do not need to evaluate parameters of the models.

(d) [5 pts.] Find the numerical value of the output resistance R_{out} of this amplifier. *Your* answer need only be correct to within $\pm 5\%$ for full credit.

(e) [5 pts.] Find the numerical value of the voltage gain $A_v (R_s = 0 \Omega, R_L = \infty \Omega)$. If you If you couldn't answer part (b), you can assume for this part that $W_1 = 100 \text{ }$ m. Your answer need only be correct to within $\pm 5\%$ for full credit.

2. Dynamic Logic Gate [15 points]

(a) [4 pts.] With a fanout of zero (no gates coneected to the output F), the load capacitance is equal to the parasitic capacitance. Find the numerical value of the parasitics capacitance C,sub>p for the case where a 50 •m-long wire is attached to F. Identify (by circling them), those transistors that contribuate to the drain-bulk capacitance C_{DB}.

(b) [4 pts.] Find the numerical value of the precharge t_{PLH} of this dunamic logic gate. If you couldn't solve part (a), you can assume that $C_p = C_L = 100$ fF for this part.

(c) [4 pts.] Find the numerical value of the worst case evaluation time t_{PHL} of this dynamic logic gate. If you couldn't solve part (a), you can assume that $C_p = C_L = 100$ fF for this part

(d) [3 pts.] Find a logical expression F in terms of the inputs A, B, C, D, and E. There is no need to simplify the expression.

3. MOSFET Current Source [16 points]

(a) [3 pts.] In the above schematic, the dotted box contains the amplifier towhich the current supply is attached. We want the DC supply to be $I_{SUP} = 50 \cdot A$. What is the required width of transistor M_2 in $\cdot m$?

(b) [3 pts.] Find the numerical value of the small-signal source resistance r_{oc} of this current source. Note that r_{oc} is indicated on the schematic.

EE 105: Fall 1997 Midterm 2

(c) [3 pts.] Find the numerical value of the gate voltage V_{G2} of transistor M_2 .

(d) [4 pts.] Plot i_{sup} vs v_{sup} characteristics on the axes below. Your values for V_{sup,min} and I_{sup} should be numerically accurate. There is no need to include channel-length modulation effects on your plot.

(e) [3 pts.] We would like to obtain a source resistance of 2 M Ω . Find the width and length of transistor M₂ needed to achieve this goal without changing I_{sup}