
Ground Rules:

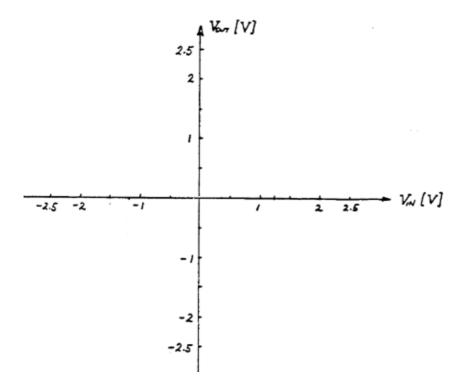
- Close book; one 8.5x11 crib sheet (both sides)
- Do all work on exam pages
- Default bipolar transistor parameters:
 - ♦*npn*: β_n=100, V_{An}=50 V, V_{CE-sat}=0.2 V
 - $pnp: \beta_p=50, V_{Ap}=25 \text{ V}, V_{EC-sat}=0.2 \text{ V}$
- Default MOS transistor parameters: note LAMBDA depends on L!
 - NMOS: MU_n C_{ox}=100e-6 A/V², LAMBDA_n=[0.1/L] V⁻¹ (L in micrometers) V_{Tp}=1 V • PMOS: MU_p C_{ox}=50e-6 A/V², LAMBDA_p=[0.1/L] V⁻¹ (L in micrometers) V_{Tp}=-1 V

a) [4 pts.] What is width of transistor M_2 such that the DC output voltage $V_{out}=0$ V for $V_{IN}=0$ V. Given: the length of M_2 is $L_2=2e-6$ m.

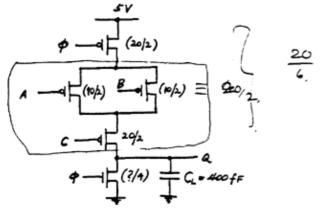
b) [4 pts.] What is the numerical value of the input resistance R_{in} of this amplifier? Your answer should be correct to within +/- 5%.

If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct answer to part (a).

c) [4 pts.] What is the numerical value of the output resistance R_{out} of this amplifier? Your answer should be correct to within +/- 5%.

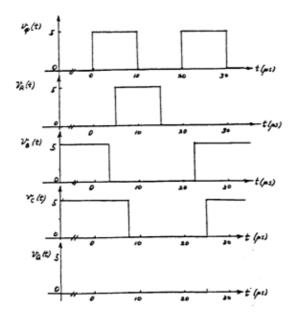

If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct answer to part (a).

d) [6 pts.] What is the numerical value of the overall voltage gain v_{out}/v_s , with $R_s=100$ kilo-ohms and $R_L=20$ kilo-ohms? Your answer should be correct to within +/- 5%.


Again, If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct answer to part (a).

e) [6 pts.] Sketch the transfer curve V_{OUT} versus V_{IN} for -2.5 <= V_{IN} <= +2.5 V on the graph below. For this part, R_L is infinity and R_S =0 V.

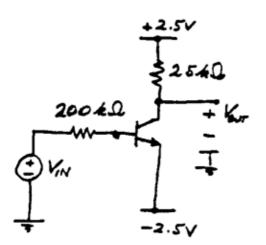
Hint: you should note that the current supplies each require at least V_{SUP(min)}=0.5 V in order to function.


Problem #2: Digital Logic Gate [14 points]

EE 105, Midterm 2, Fall 1996

a) [2 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for Q in terms of the three inputs A, B and C?

b) [4 pts.] The graphs below plot the voltage waveforms over an interval of 35 microseconds. Fill in the output voltage waveform $v_Q(t)$ over 0 -=> 35e-6 s. Note that the rise and fall times are essentiall zero on this time scale.

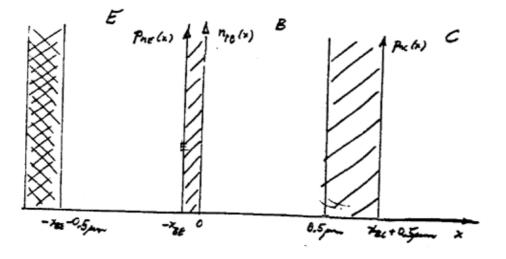


c) [4 pts.] Find the numerical value of the **best case** low-to-high propagation delay (t_{PLH}) for this logic gate.

d) [4 pts.] Find the width of the n-channel transistor such that the high-to-low propagation delay (t_{PLH}) is equal to your answer for part c). If you couldn't answer part c) you can assume for this part that $t_{PLH (best)} = 1$ ns = 10⁻⁹s.

Problem #3: Bipolar Transistor Physics [12 points]

NOTE: The default npn transistors do not apply for this problem!


GIVEN: $N_{dE}=2x10^{18} \text{ cm}^{-3}$ $N_{dB}=10^{17} \text{ cm}^{-3}$

Problem #2: Digital Logic Gate [14 points]

N_{dC}=1016 cm-3

The base and emitter widths are $W_B=W_E=0.5$ micrometers. The electron diffusion coefficient in the base is $D_{nB}=10 \text{ cm}^2/\text{s}$ and the hole diffusion coefficient in the emitter is $D_{pE}=5 \text{ cm}^2/\text{s}$.

a) [3 pts.] Qualitatively sketch the minority carrier concentrations in the emitter, base and collector on the graph below, assuming that the transistor is biased in the forward active region.

b) [3 pts.] For V_{OUT}=0 V what is the numerical value of the minority electron concentration at x=0, $n_{pB}(0)$? You can assume that the transistor is biased in the forward active region.

c) [3 pts.] What is the numerical value of the base current I_B for the bias condition in part b)? If you couldn't solve b) assume for this part that $n_{pB}(0) = 10^{15}$ cm⁻³ -- not the correct answer to b), of course. d) [3 pts.] What is the numerical value of V_{IN} in order that the transistor is biased in the forward active region with V_{OUT}=0 V?

Notes: You cannot assume that $V_{BE}=0.7$ V for this part. If you couldn't solve parts b) and c) you can assume that $n_{pB}(0)=10^{15}$ cm⁻³ and that $I_{B}=4$ micro-amps. Neither of these answers are correct, of course.

Answers!

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>examfile@hkn.eecs.berkeley.edu.</u>