EEIO5 MIDTERM \#1 SOLUTIONS

Problem 1 [15 points]: Semiconductor Basics
Consider a Si sample of length $10 \mu \mathrm{~m}$ and cross-sectional area $1 \mu \mathrm{~m}^{2}$, uniformly doped with $10^{16} \mathrm{~cm}^{-3}$ boron, maintained at $T=300 \mathrm{~K}$. 1 Volt is applied across its length, as shown below:

1 Volt

acceptor atom
a) Estimate the resistance of this sample. [6 pts]

$$
N_{A}=10^{16} \mathrm{~cm}^{-3}, N_{D}=0
$$

Since $N_{A}>N_{D}$, this sample is p-type; $\quad p=N_{A}-N_{D}=10^{16} \mathrm{~cm}^{-3}$

$$
n=n_{1}^{2} / p=10^{20} / 10^{16}=10^{4} \operatorname{cm}^{3}
$$

From plot on Page 1, $\mu_{p} \cong 450 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$ and $\mu_{n} \approx 1200 \mathrm{~cm}^{2} / \mathrm{V} \cdot \mathrm{s}$

$$
\begin{aligned}
& R \cong \frac{1}{q \mu_{p} p}=\frac{1}{\left(1.6 \times 10^{-1}\right)(450)(10)} \cong 1.4 \Omega-c m \\
& R=\rho \frac{L}{A}=1.4 \frac{10 \times 10^{-4}}{\left(10^{-4}\right)^{2}}-1.4 \times 10^{5} \Omega=140 \mathrm{k} \Omega
\end{aligned}
$$

b) Estimate the electron drift velocity. [5 pts]

$$
\varepsilon=\frac{1 \mathrm{~V}}{10 \times 10^{-4 \mathrm{~cm}}}=10^{3} \mathrm{~V} / \mathrm{cm}
$$

From plot on Page $1, \mu_{n} \approx 1200 \mathrm{~cm}^{2} / \mathrm{V} s$

$$
v_{e}=\mu_{n} \varepsilon=1200 \cdot 10^{2}=1.2 \times 10^{6} \mathrm{~cm} / \mathrm{s}
$$

c) Qualitatively (no calculations required), how would the resistivity of this sample change if it were to be additionally doped uniformly with $2 \times 10^{16} \mathbf{c m}^{-3}$ phosphorus? Explain briefly. [4 pts]
donor atom
Since $N_{D}>N_{A}$, this sample is now n-type, with $n=N_{D}-N_{A}=10^{16} \mathrm{ma}^{-3}$ From the plot on Page 1, $\mu_{n}=900 \mathrm{~cm}^{2} / \mathrm{Nis}$, which is $2 \times$ greater than the hole mobility in the uncompensated sample. Since the majority-carrier conctatration is unchanged, and the majority-carrier mobility Page 3 is doubled, the resistivity is halved (i.e. ρ is reduced by a factor of 2 .)

Problem 2 [15 points]: PN Junctions
Consider a Si PN junction diode, maintained at $T=300 \mathrm{~K}$, with a structure and potential distribution as shown.

Note that the width of the depletion region is $0.4 \mu \mathrm{~m}=0.4 \times 10^{-4} \mathrm{~cm}$.
a) Calculate the built-in potential, V_{0}. [4 pts]

$$
\begin{aligned}
V_{0} & =V_{T} \ln \left(\frac{N_{A} N_{D}}{n_{i}^{2}}\right)=0.026 \ln \left(\frac{10^{16} \cdot 10^{16}}{10^{20}}\right)=0.026 \ln \left(10^{12}\right) \\
& =12 \cdot 0.026 \ln (10)=12 \cdot 0.06=0.72 \mathrm{~V}
\end{aligned}
$$

b) What is the applied voltage, V_{D} ? Is this diode forward or reverse biased? (Circle one.) [7 pts]

$$
\begin{aligned}
W_{\text {dep }} & =\sqrt{\frac{2 \varepsilon_{s i}}{q}\left(\frac{1}{N_{A}}+\frac{1}{N_{D}}\right)\left(V_{D}-V_{D}\right)}=\sqrt{\frac{4 \varepsilon_{s i}}{q^{N}}\left(V_{0}-V_{D}\right)} \text { where } N=10^{\text {b em }} \text {. } \\
\Rightarrow V_{0}-V_{D} & =\frac{q W_{d e_{p}}^{2}}{4 \varepsilon_{s i}}=\frac{\left(1.6 \times 10^{-19}\right)\left(0.4 \times 10^{-4}\right)^{2}\left(10^{16}\right)}{4 \times 10^{-12}}=0.64 \mathrm{~V} \\
V_{D} & \left.=V_{0}-0.64 \mathrm{~V}=0.72 \mathrm{~V}-0.64 \mathrm{~V}=0.08 \mathrm{~V}\right]
\end{aligned}
$$

Since $V_{D}>0$, the diode is forward pieced
c) Calculate the areal junction (depletion) capacitance. [4 pts]

$$
\left.C_{d e p}=\frac{E_{s_{i}}}{W_{\text {dep }}}=\frac{10^{-12} \mathrm{~F} / \mathrm{cm}}{0.4 \times 10^{-4} \mathrm{~cm}}=2.5 \times 10^{-8} \mathrm{~F} / \mathrm{cm}^{2}\right]
$$

Problem 3 [15 points]: Bipolar Junction Transistor Design

a) Why is the base region doped less heavily than the emitter region? [3 pts]

The ratio of carrier diffusion into the base (which determines I_{c}) to carrier diffusion into the emitter (which determines I_{B}) is proportional to $N E / N_{B}$. Thus, to achieve large current gain $\beta \equiv I_{c} / I_{B}$,
N_{E} should be much larger than N_{B}
b) Why is the base region doped more heavily than the collector region? [3 pts]

To minimize base -width modulation (ie to maximize the Early voltage V_{A} and hence the BJT output resistance r_{0}), the width of the collector junction depletion region in the base should be minimized, by making N_{B} much greater than N_{C} so that most of the depletion region resides within the
c) Indicate in the table below (by checking the appropriate box) how the BJT parameters would change, if the base width were to be increased (e.g. by $2 \times$). Provide qualitative reasoning for your answers. [9 pts]

Problem 4 [15 points]: Bipolar Junction Transistor I-V and Small-Signal Model

Consider a BJT with the $I-V$ characteristics as shown below.

a) Draw the small-signal model for the BJT for the DC bias condition $V_{\mathrm{BE}}=0.8 \mathrm{~V}, V_{\mathrm{CE}}=2.5 \mathrm{~V}$. [12 pts] (Indicate numerical values and units for r_{π}, g_{m}, and r_{0}, and label the transistor terminals.)
$g_{m}=\frac{I_{C}}{V_{T}}=\frac{3 \times 10^{-3} \mathrm{~A}}{0.026 \mathrm{~V}} \simeq 0.1 \mathrm{~s}$
$r_{\pi}=\frac{\beta}{g_{m}} \cong \frac{75}{0.1}=750 \Omega$
$r_{0} \equiv$ the inverse slope of the Ie vs. Vc characteristic $\% \frac{5 \mathrm{~V}}{2 \mathrm{~mA}}=2.5 \mathrm{k} \Omega$

b) Show qualitatively (by sketching curves on each of the plots above) how the $I-V$ characteristics would change if the emitter dopant concentration were to be increased by a factor of $\mathbf{2}$. [3 pts]
If N_{E} increases by $2 x, I_{B} \propto \frac{1}{N_{E}}$ would decrease by $2 x$.
I_{c} is not strongly dependent on N_{E}, so the $I_{C} v S . V_{C E}$ characteristic would not be affected significantly,

Problem 5 [20 points]: BJT Amplifier

Consider the BJT amplifier stage shown below, operating at $T=300 \mathrm{~K}$ with a bias current $\boldsymbol{I}_{\mathrm{C}}=\mathbf{0 . 1} \mathbf{m A}$.
Assume $I_{\mathbf{S}}=1 \times 10^{-16} \mathbf{A}, \beta=100, V_{\mathrm{A}}=\infty . R_{\mathbf{C}}=10 \mathrm{k} \Omega, R_{\mathbf{E}}=5 \mathrm{k} \Omega$, and $V_{\mathbf{C C}}=\mathbf{2 . 5 V}$. Note that $e^{0.72 / 0.026} \cong 10^{12}$.

a) What is the purpose of R_{1} and R_{2} ? [$\mathbf{2} \mathbf{~ p t s] ~}$
to establish the OC bias voltage for the base of the BJT.
b) What is the purpose of R_{E} ? [2 pts]
to reduce the error in I_{C} (hence $g m, r_{\pi}$) resulting from errors in the values of R_{1} and R_{2}.
c) Is the BJT operating in the active mode? Justify your answer. [5 pts] since $I_{C}=10^{12} I_{S}, V_{B E}=0.72 \mathrm{~V}>0$ Since $I_{E} \simeq I_{C}=0.1 \mathrm{~mA}$, the voltage dropped across R_{E} is $(0.1 \mathrm{~mA})(5 \mathrm{k} \Omega)=0.5 \mathrm{~V}$ $\Rightarrow V_{b}=V_{R E}+V_{B E}=0.5 \mathrm{~V}+0.72 \mathrm{~V}=1.22 \mathrm{~V}$
$V_{c}=V_{c c}-I_{c} R_{c}=2.5-(0.1 \mathrm{~mA})(10 \mathrm{k} \Omega)=2.5 \mathrm{~V}-1 \mathrm{~V}=1.5 \mathrm{~V}$
Since $V_{c}>V_{b}$, collector junction is reverse-biased.
d) Draw (in the box provided) the most simplified circuit that can be used for AC analysis to determine the small-signal voltage gain, $\boldsymbol{A}_{\mathbf{v}}$. You can assume that C_{1} and C_{2} are large, so that their impedances are negligible at the small-signal frequency of interest. Label the various circuit elements. [6 pts]
shorting out the capacitors and Vac:

Page 7

Problem 5 (continued)
e) Write expressions for the small-signal voltage gain $\left(A_{\mathrm{v}}\right)$, input resistance $\left(R_{\text {in }}\right)$, output resistance ($R_{\text {out }}$). [$\mathbf{5} \mathbf{~ p t s]}$

(from circuit in part (d))
$\frac{\text { Circuit for analysis of } R_{i n}=\frac{v_{x}}{i_{x}} \text { : }}{i x \rightarrow}$

$$
R_{\text {in }}=R_{1}\left\|R_{2}\right\| r_{\pi}
$$

Circuit for analysis of $\operatorname{Rot}=\frac{\sqrt{x}}{1 x}$:

$$
R_{\text {out }}=R_{c}
$$

