University of California
College of Engineering
Department of Electrical Engineering and Computer Sciences

Jan M. Rabaey

TuTh 2-3:30
Thursday, September 28, 6:30-8:00pm

EECS 105: FALL 06 - MIDTERM 1

NAME	Last	
	First	

\square

Problem 1 (8):
Problem 2 (12):
Problem 3 (10):

PROBLEM 1: Circuit Analysis (8 pts)

In the lab of EE105, you are given a special device "X", shown in the Figure 1a to analyze large and small signal behavior. Your measurements reveal that the device has the I-V relationship of Figure 1b, which can be expressed as $I=-(V-a)^{2}+\mathrm{a}^{2}$ with $\mathrm{a}=1$ (for $0 \leq V \leq 2$).

a. Determine the current I_{o} for $V=V_{\mathrm{o}}=0.5 \mathrm{~V}$. ($\mathbf{1} \mathbf{~ p t}$)

$$
I_{o}=
$$

b. Draw the small signal resistance r vs V_{0}. Note that $\underline{\mathrm{I}}=0[\mathrm{~A}]$ outside the region $0[\mathrm{~V}] \leq V_{\mathrm{o}} \leq$ 2a[V]. (2 pt)

c. Now you slightly change the voltage from the bias point established in (a), increasing it with $\Delta v=+0.1 \mathrm{~V}$. Using the results from (b), determine the current change Δi. (2pt)
$\Delta i=$
d. We now hook up X between the reference voltage $V D D=2[\mathrm{~V}]$, and an input current source $I_{i n}=I_{\mathrm{o}}+0.1 \sin (2 \pi 1000 t)$ as shown in Figure 2 (with I_{o} as computed in a). Draw $V_{\text {out }}$ as a function of time. ($\mathbf{3} \mathbf{~ p t}$)

Figure 2

PROBLEM 2: Diode (12 pts)

Consider the circuit picture in the Figure below. For this problem, you may assume the following values: $\varepsilon_{\mathrm{s}}=1.03510^{-12} \mathrm{~F} \mathrm{~cm}^{-1} ; \varepsilon_{\mathrm{ox}}=3.4510-13 \mathrm{~F} \mathrm{~cm}^{-1}$. Contact potentials should be ignored throughout this question. Also, D1 and M1 are identical in area.

a. The pn-diode D1 has the following doping profile:
p-type material:

$$
\begin{aligned}
& \mathrm{Na}=2 * 10^{17} \mathrm{~cm}^{-3} \\
& \mathrm{Nd}=1 * 10^{17} \mathrm{~cm}^{-3}
\end{aligned}
$$

n-type material:
$\mathrm{Nd}=10^{16} \mathrm{~cm}^{-3}$
Determine the depletion capacitance per unit area of D1 in thermal equilibrium. (2 pts)
\square
b. The second component M1 is a MOSCAP with the following characteristics: Gate $=\mathrm{p}+$ material with $\phi_{p^{+}}=-550 \mathrm{mV}$; tox $=10 \mathrm{~nm}$; substrate is doped with $\mathrm{Na}=10^{16} \mathrm{~cm}^{-3}$; and $\mathbf{V}_{\mathbf{T}}=\mathbf{1 . 0 5 V}$.
Determine the flatband voltage $V_{F B}$ of M1. (2pts)

c. Determine the minimum and maximum small signal capacitance per unit area of M1. ($\mathbf{3} \mathbf{~ p t s)}$
\square
$\mathrm{Cmin}=$
$C \max =$
d. Plot the total small signal capacitance per unit area as seen between node A and the ground (as indicated by the arrows in the Figure) when sweeping the bias voltage $V_{D C}$ between 0 and 5 V . Your plot should show the individual components and should include numerical values for the important breakpoints in the graphs. ($5 \mathbf{p t s}$)

PROBLEM 3: Semiconductor Physics (10 pts)
Given an ion-implanted silicon region with dimension as shown in figure below. The arsenic dose implanted per unit area equals $Q_{d}=10^{13} \mathrm{~cm}^{-2}$, and the post-anneal thickness $t=1 \mu \mathrm{~m}$. You may ignore the contact potential effect and assume room temperature. Also use Figure 2.8 in the text book to derive mobilities.

(a) Compute the doping concentration N_{d}, and the carrier concentrations n_{0} and p_{0} under thermal equilibrium. (2 pts)

$N_{d}=$
$n_{0}=$
$p_{0}=$

(b) Viewing the silicon as three regions (-6 to 0,0 to 2 , and 2 to $8 \mu \mathrm{~m}$), compute the resistance of each region as well as the total resistance of the strip. (4 pts)

(c) If $V=2 \mathrm{~V}$, compute the electric field and sketch it. You may ignore the variation effect along the y -axis. (4 pts)

