

University of California College of Engineering Department of Electrical Engineering and Computer Sciences

TuTh 2-3:30

Jan M. Rabaey

Thursday, September 28, 6:30-8:00pm

EECS 105: FALL 06 — MIDTERM 1

NAME	Last	First

SID	
-----	--

Problem 1 (8):

Problem 2 (12):

Problem 3 (10):

Total (30)

PROBLEM 1: Circuit Analysis (8 pts)

In the lab of EE105, you are given a special device "X", shown in the Figure 1a to analyze large and small signal behavior. Your measurements reveal that the device has the I-V relationship of Figure 1b, which can be expressed as $I = -(V-a)^2 + a^2$ with a = 1 (for $0 \le V \le 2$).

a. Determine the current I_0 for $V = V_0 = 0.5$ V. (1 pt)

$I_o =$

b. Draw the small signal resistance r vs V_0 . Note that $\underline{I} = 0[A]$ outside the region $0[V] \le V_0 \le 2a[V]$. (2 pt)

c. Now you slightly change the voltage from the bias point established in (a), increasing it with $\Delta v = +0.1$ V. Using the results from (b), determine the current change Δi . (2pt)

$\Delta i =$

d. We now hook up X between the reference voltage VDD = 2[V], and an input current source $I_{in} = I_0 + 0.1 \sin(2\pi 1000t)$ as shown in Figure 2 (with I_o as computed in **a**). Draw V_{out} as a function of time. (**3 pt**)

PROBLEM 2: Diode (12 pts)

Consider the circuit picture in the Figure below. For this problem, you may assume the following values: $\varepsilon_s = 1.035 \ 10^{-12} \text{ F cm}^{-1}$; $\varepsilon_{ox} = 3.45 \ 10^{-13} \text{ F cm}^{-1}$. Contact potentials should be ignored throughout this question. Also, D1 and M1 are identical in area.

a. The pn-diode D1 has the following doping profile:

```
p-type material:

Na = 2*10^{17} \text{ cm}^{-3}

Nd = 1*10^{17} \text{ cm}^{-3}

n-type material:

Nd=10^{16} \text{ cm}^{-3}
```

Determine the depletion capacitance per unit area of D1 in thermal equilibrium. (2 pts)

b. The second component M1 is a MOSCAP with the following characteristics: Gate = p+ material with $\phi_{p+} = -550 \text{ mV}$; tox = 10 nm; substrate is doped with Na = 10^{16} cm^{-3} ; and $\mathbf{V_T} = \mathbf{1.05V}$. Determine the flatband voltage V_{FB} of M1. (**2pts**)

 $V_{FB} =$

c. Determine the minimum and maximum small signal capacitance per unit area of M1. (3 pts)

Cmin =

Cmax =

d. Plot the total small signal capacitance per unit area as seen between node A and the ground (as indicated by the arrows in the Figure) when sweeping the bias voltage V_{DC} between 0 and 5 V. Your plot should show the individual components and should include numerical values for the important breakpoints in the graphs. (5 pts)

PROBLEM 3: Semiconductor Physics (10 pts)

Given an ion-implanted silicon region with dimension as shown in figure below. The arsenic dose implanted per unit area equals $Q_d = 10^{13}$ cm⁻², and the post-anneal thickness $t = 1 \mu$ m. You may ignore the contact potential effect and assume room temperature. Also use Figure 2.8 in the text book to derive mobilities.

(a) Compute the doping concentration N_d , and the carrier concentrations n_0 and p_0 under thermal equilibrium. (2 pts)

 $N_d = n_0 = p_0 =$

(b) Viewing the silicon as three regions (-6 to 0, 0 to 2, and 2 to 8 μm), compute the resistance of each region as well as the total resistance of the strip. (4 pts)

<i>R1</i> =	
<i>R2</i> =	
<i>R3</i> =	
Rtot =	

(c) If V = 2V, compute the electric field and sketch it. You may ignore the variation effect along the y-axis. (4 pts)

