Name:

SID:

Name of student at your left:
(1 point)
Name of student at your right:
(1 point)

UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

Midterm 2
EECS 105
B. E. BOSER

October 26, 2004
FALL 2004

- Closed book, closed notes.
- No calculators.
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible.

Up to 5 points penalty for results that are not reasonably simplified.

- Mark your name and SID at the top of the exam and all extra sheets.
- Be kind to the graders and write legibly. No credit for illegible results.

Problem 1 [25 points]

Given: $\quad \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=1 \mathrm{~V}, \lambda_{\mathrm{n}}=0.01 \mathrm{~V}^{-1} @ \mathrm{~L}=1 \mu \mathrm{~m}$
$\mathrm{gm}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}>1$
The circuit is biased such that all transistors are in saturation.
a) [10 points] Find numerical values (not expressions) for:

$$
\mathrm{I}_{\mathrm{D} 3}=\quad \mu \mathrm{A}
$$

\square
$\mathrm{g}_{\mathrm{m} 3}=$
$\mu \mathrm{S}$
b) [15 points] Find an algebraic expression for the small signal output resistance (at terminal $v_{\text {OUT }}$) of the circuit as a function of transistor small-signal parameters. Use $\mathrm{g}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}$ >> 1 to simplify your result as much as possible:
$\mathrm{r}_{\text {out }}=$

Problem 2 [25 points]

The above sketch shows a rough approximation of the electron drift velocity versus the electrical field in Silicon. For an NMOS transistor with $\mathrm{L}=0.1 \mu \mathrm{~m}, \mathrm{~W}=10 \mu \mathrm{~m}$, and $\mathrm{C}_{\mathrm{ox}}=5 \mathrm{fF} / \mu \mathrm{m}^{2}$ calculate the following:
a) [10 points] What is the minimum $V_{D S}$ (numerical value) for which current flow is limited by the thermal carrier drift velocity? Assume that the field in the channel is uniform.

$$
\mathrm{V}_{\mathrm{DS}}=\quad \mathrm{V}
$$

b) [15 points] Find the numerical value of the maximum drain current I_{D} for $\mathrm{V}_{\mathrm{GS}}{ }^{-}$ $\mathrm{V}_{\mathrm{TH}}=1 \mathrm{~V}$. Hint: get the current from the channel charge and its velocity.

$$
\mathrm{I}_{\mathrm{D}}=\quad \mathrm{mA}
$$

Problem 3 [25 points]

The circuit shown above is biased so that all transistors are in saturation. Draw a small signal model (label all elements with appropriate symbols, e.g. $g_{m 1}, r_{o 2}$) and find an algebraic expression for the small-signal voltage gain $a_{v}=v_{o u t} / v_{i n}$ as a function of smallsignal parameters (g_{m} 's and $r_{o}{ }^{\prime}$'s). Use $g_{m} r_{o} \gg 1$ to simplify your result.

Small-signal model (neatness counts) [13 points]:

\square
$a_{v}=$

Problem 4 [23 points]

The circuit shown above is biased so that the transistor is in saturation.
a) [8 points] What is the type of this amplifier?

Common \qquad
b) [15 points] Find an algebraic expression for the small-signal voltage ratio v_{2} / v_{1} for $i_{s}=0$ as a function of $\mathrm{R}_{1}, \mathrm{R}_{2}$, and transistor small-signal parameters.
Hint: you may find small-signal model very helpful to answer this question.
$v_{2} / v_{1}=$

