Name:	
SID:	
Name of student at your left:	(1 point)
Name of student at your right:	(I)

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

B. E. BOSER

Midterm 2 October 26, 2004

EECS 105 FALL 2004

- Closed book, closed notes.
- No calculators.
- Copy your answers into marked boxes on exam sheets.
- Simplify numerical and algebraic results as much as possible. Up to 5 points penalty for results that are not reasonably simplified.
- Mark your name and SID at the top of the exam and all extra sheets.
- Be kind to the graders and write legibly. No credit for illegible results.

Problem 1 [25 points]

- $\begin{array}{ll} \underline{Given:} & \mu_n C_{ox} = 200 \mu A/V^2, \ V_{TN} = 1V, \ \lambda_n = 0.01 V^{-1} @ L = 1 \mu m \\ & g_m r_o >> 1 \\ & \text{The circuit is biased such that all transistors are in saturation.} \end{array}$
- a) [10 points] Find *numerical* values (not expressions) for:

$$g_{m3} =$$

μS

b) [15 points] Find an *algebraic* expression for the small signal output resistance (at terminal v_{OUT}) of the circuit as a function of transistor small-signal parameters. Use $g_m r_o >> 1$ to simplify your result as much as possible:

r_{out} =

Problem 2 [25 points]

The above sketch shows a rough approximation of the electron drift velocity versus the electrical field in Silicon. For an NMOS transistor with L=0.1 μ m, W=10 μ m, and C_{ox}=5fF/ μ m² calculate the following:

a) [10 points] What is the minimum V_{DS} (*numerical* value) for which current flow is limited by the thermal carrier drift velocity? Assume that the field in the channel is uniform.

b) [15 points] Find the *numerical* value of the maximum drain current I_D for V_{GS} - V_{TH} =1V. Hint: get the current from the channel charge and its velocity.

$I_D =$	mA
---------	----

Problem 3 [25 points]

The circuit shown above is biased so that all transistors are in saturation. Draw a small signal model (label all elements with appropriate symbols, e.g. g_{m1} , r_{o2}) and find an *algebraic* expression for the small-signal voltage gain $a_v = v_{out}/v_{in}$ as a function of small-signal parameters (g_m 's and r_o 's). Use $g_m r_o >> 1$ to simplify your result.

Small-signal model (neatness counts) [13 points]:

Problem 4 [23 points]

The circuit shown above is biased so that the transistor is in saturation.

a) [8 points] What is the type of this amplifier?

Common		 	

b) [15 points] Find an *algebraic* expression for the small-signal voltage ratio v_2/v_1 for $i_s=0$ as a function of R₁, R₂, and transistor small-signal parameters. Hint: you may find small-signal model very helpful to answer this question.

 $v_2/v_1 =$