| Name [1 point]: | AMIN |  |
|-----------------|------|--|
| SID:            |      |  |

## UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

# Midterm 1EECS 105B. E. BOSERSeptember 28, 2004FALL 2004

Show derivations and **mark results** with box around them. Erase or cross out erroneous attempts. <u>Simplify algebraic results as much as possible!</u> Mark your name and SID at the top of the exam and all extra sheets.

## For Office Use Only:

|           | Points |
|-----------|--------|
| Problem 1 | /25    |
| Problem 2 | /25    |
| Problem 3 | /24    |
| Problem 4 | /25    |
| TOTAL     | /100   |

## Problem 1 [25 points]: Sheet resistance

Shown below is the layout of a p-type resistor with N<sub>A</sub> =  $10^{17}$  cm<sup>-3</sup>,  $\mu_p = 250$  cm<sup>2</sup>/V<sub>S</sub> and thickness t = 1 µm. Electronic charge  $q = 1.6 \times 10^{-19}$  C.



- (a) [10 pts] Calculate the sheet resistance  $R_{sh}$  in  $\Omega/$ .
- (b) [10 pts] Assuming  $R_{sh} = 1k\Omega/$  (not the correct answer for part a), calculate the resistance between terminals V<sub>1</sub> and V<sub>2</sub> for  $s = 1\mu m$ .
- (c) [5 pts] Repeat part (b) with  $s = 2\mu m$ .

#### ANSWERS

(a)  

$$R_{sh} = \frac{1}{q \cdot p \cdot \mu_{p} \cdot t} = \frac{1}{q \cdot N_{A} \cdot \mu_{p} \cdot t} = \frac{1}{(1.6x10^{-19}C) \cdot (10^{17}cm^{-3}) \cdot (250cm^{2}/V_{S}) \cdot (10^{-4}cm)}$$

$$\therefore R_{sh} = 2500 \frac{\Omega}{square}$$

(b) The number of squares in the segment marked by red is  $\frac{5s}{1s} = 5$ . The number of squares in the segment marked by green is  $\frac{9s}{3s} = 3$ . Hence, the total number of squares equals 5+3=8. As a result,

$$R = R_{sh} \cdot (number \ of \ squares) = (1 \frac{k\Omega}{square}) \cdot (8 \ squares) = 8k\Omega$$

(c) From part (b), the value of s does not enter into the expression for R. Hence, the value for R is unaffected from part (b) and is equal to  $8k\Omega$ .

## Problem 2 [25 points]: Carrier transport

In this problem, you are to design an over-current protection device. Assume that the slab of silicon shown below is doped with an acceptor concentration of  $N_a$  (with  $N_a >> n_i$ ).

$$N_a = 10^{16} \text{ cm}^{-3}, \ \mu_p = 250 \text{ cm}^2/\text{Vs}, \ v_{sat,p} = 10^6 \text{ cm}/\text{s}, \ t = 10 \mu\text{m}, \ W = 50 \,\mu\text{m},$$

 $L = 100 \,\mu\text{m}$ , electronic charge  $q = 1.6 \times 10^{-19} \,\text{C}$ .



- (a) [15 pts] Derive an analytical expression and calculate the numerical value for the maximum current  $I_{max}$ .
- (b) [10 pts] Derive an analytical expression and calculate the numerical value for  $V_c$  (see the I-V curve below for the definition of  $V_c$ ).



# **ANSWERS**

(a)  

$$I_{\max} = q \cdot p \cdot v_{sat,p} \cdot A = q \cdot N_a \cdot v_{sat,p} \cdot W \cdot t$$

$$\therefore I_{\max} = (1.6x10^{-19} C) \cdot (10^{16} cm^{-3}) \cdot (10^{6} cm/s) \cdot (50x10^{-4} cm) \cdot (10x10^{-4} cm) = 8mA$$

$$v_{sat,p} = \mu_p \cdot E_c = \mu_p \cdot \frac{V_c}{L} \Longrightarrow V_c = \frac{v_{sat,p} \cdot L}{\mu_p}$$

(b)  

$$\therefore V_c = \frac{(10^6 \ cm/s) \cdot (100 \times 10^{-4} \ cm)}{250 \ cm^2/V_S} = 40V$$

## Problem 3 [24 points]: Region of operation

Shown below are both NMOS and PMOS transistors with various terminal voltages referred to ground. Identify the source terminal  $(V_1 \text{ or } V_2)$  and the region of operation (cutoff or triode) of each transistor by circling the correct answer in the table provided.



| Circuit      | Source Terminal               | Region        |
|--------------|-------------------------------|---------------|
| Example      |                               | Cutoff Triode |
| (a)          | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |
| <b>(b)</b>   | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |
| (c)          | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |
| ( <b>d</b> ) | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |
| (e)          | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |
| ( <b>f</b> ) | $\mathbf{V}_1$ $\mathbf{V}_2$ | Cutoff Triode |

#### ANSWERS

(a)  $V_2$  is the **source** terminal. Also,  $V_{Tn} = V_{Tn0} = 1V$  because the source  $(V_2)$  and bulk  $(V_4)$  are at the same potential. The NMOS transistor is **cutoff** because

$$V_{GS} = V_3 - V_2 = 0.5V - 0V = 0.5V < V_{Tn} = 1V$$

(b)  $V_1$  is the **source** terminal. Also,  $V_{T_p} = V_{T_p0} = -1V$  because the source  $(V_1)$  and bulk  $(V_4)$  are at the same potential. The PMOS transistor is in **triode** because

$$V_{SG} = V_1 - V_3 = 5V - 0V = 5V > |V_{Tp}| = 1V$$
  
and

$$V_{SD} = V_1 - V_2 = 5V - 2V = 3V < V_{SG} - |V_{Tp}| = V_1 - V_3 - |V_{Tp}| = 5V - 0V - 1V = 4V.$$

(c)  $V_1$  is the **source** terminal. Also,  $V_{T_p} = V_{T_p0} = -1V$  because the source  $(V_1)$  and bulk  $(V_4)$  are at the same potential. The PMOS transistor is **cutoff** because

$$V_{SG} = V_1 - V_3 = 5V - 5V = 0V < |V_{Tp}| = 1V.$$

(d)  $V_2$  is the source terminal. Also,  $V_4$  is the bulk terminal. As a result,

$$V_{Tn} = V_{Tn0} + \gamma_n (\sqrt{-2\phi_p - V_{BS}} - \sqrt{-2\phi_p}) = V_{Tn0} + \gamma_n (\sqrt{-2\phi_p - (V_4 - V_2)} - \sqrt{-2\phi_p})$$
  
$$\therefore V_{Tn} = 1V + 1\sqrt{V} \cdot (\sqrt{1V - (-3V)} - \sqrt{1V}) = 2V$$

The NMOS transistor is **cutoff** because  $V_{GS} = V_3 - V_2 = 4.5V - 3V = 1.5V < V_{Tn} = 2V$ .

(e)  $V_1$  is the **source** terminal. Also,  $V_4$  is the bulk terminal. As a result,

$$V_{Tp} = V_{Tp0} + \gamma_p (\sqrt{2\phi_n - V_{SB}} - \sqrt{2\phi_n}) = V_{Tp0} + \gamma_p (\sqrt{2\phi_n - (V_1 - V_4)} - \sqrt{2\phi_n})$$
  
$$\therefore V_{Tp} = -1V + (-1\sqrt{V}) \cdot (\sqrt{1V - (-8V)} - \sqrt{1V}) = -3V$$

The PMOS transistor is in triode because

$$V_{SG} = V_1 - V_3 = 5V - 0V = 5V > |V_{T_p}| = 3V$$
  
and

$$V_{SD} = V_1 - V_2 = 5V - 4V = 1V < V_{SG} - |V_{Tp}| = V_1 - V_3 - |V_{Tp}| = 5V - 0V - 3V = 2V$$

(f)  $V_2$  is the **source** terminal. Also,  $V_{Tn} = V_{Tn0} = 1V$  because the source  $(V_2)$  and bulk  $(V_4)$  are at the same potential. The NMOS transistor is in **triode** because

 $V_{GS} = V_3 - V_2 = 104V - 100V = 4V > V_{Tn} = 1V$ and

 $V_{DS} = V_1 - V_2 = 102V - 100V = 2V < V_{GS} - V_{Tn} = V_3 - V_2 - V_{Tn} = 104V - 100V - 1V = 3V \; .$ 

### Problem 4 [25 points]: CMOS switch

For this problem, ignore the backgate effect; that is, let  $_{n} = _{p} = 0$ .

| NMOS                                    | PMOS                                           |
|-----------------------------------------|------------------------------------------------|
| $V_{TOn} = 1 \mathbf{V}$                | $V_{T0p} = -1$ V                               |
| $\mu_n C_{ox} = 200 \ \mu \text{A/V}^2$ | $\mu_p C_{ox} = 100 \ \mu \text{A}/\text{V}^2$ |



Figure 1: CMOS switch for part (a).

- (a) [15 pts] Find  $W_n$  and  $W_p$  such that  $R_{io} = 1 \text{ k}$  for both  $V_i = V_o = 0 \text{ V}$  and  $V_i = V_o = 5 \text{ V}$  (see Figure 1 above).  $R_{io}$  is the resistance between the input and output terminals,  $V_i$  and  $V_o$ .
- (b) [10 pts] Now, let  $W_n = 10 \mu m$  and  $W_p = 40 \mu m$  (see Figure 2 below). NOTE: these are <u>not</u> the answers you found for part (a). Calculate  $R_{io}$  for  $V_i = V_o = 2 V$ .



Figure 2: CMOS switch for part (b).

**ANSWERS** 

For 
$$V_{DS} = 0$$
,  $R_{NMOS} = \frac{1}{\mu_n C_{ox} \cdot (\frac{W}{L})_n \cdot (V_{GS} - V_{Tn0})}$  (1).

Also, for 
$$V_{SD} = 0$$
,  $R_{PMOS} = \frac{1}{\mu_p C_{ox} \cdot (\frac{W}{L})_p \cdot (V_{SG} - |V_{Tp0}|)}$  (2).

(a) For  $V_i = V_o = 0V$ , the PMOS transistor is off. Hence,

$$R_{io} = R_{NMOS} = \frac{1}{(200 \, \mu A / V^2) \cdot (\frac{W}{4 \mu m})_n \cdot (5V - 0V - 1V)} = 1k\Omega$$
. Solving for  $W_n$  yields,  
$$W_n = 5\mu m$$
.

For  $V_i = V_o = 5V$ , the NMOS transistor is off. Hence,

$$R_{io} = R_{PMOS} = \frac{1}{(100 \, \mu A/V^2) \cdot (\frac{W}{4\mu m})_p \cdot (5V - 0V - 1V)} = 1k\Omega$$
. Solving for  $W_p$  yields,

 $W_p = 10 \mu m$ .

(b) From (1) above, 
$$R_{NMOS} = \frac{1}{(200 \frac{\mu A}{V^2}) \cdot (\frac{10 \mu m}{4 \mu m}) \cdot (5V - 2V - 1V)} = 1k\Omega$$
. Similarly,  
using (2) above,  $R_{PMOS} = \frac{1}{(100 \frac{\mu A}{V^2}) \cdot (\frac{40 \mu m}{4 \mu m})_p \cdot (2V - 0V - 1V)} = 1k\Omega$ . But,  $R_{io}$  is the

parallel combination of  $R_{NMOS}$  and  $R_{PMOS}$ . Hence,

$$R_{io} = \frac{R_{NMOS} \cdot R_{PMOS}}{R_{NMOS} + R_{PMOS}} = 500\Omega \,.$$